Improving Intensive Care Unit Early Readmission Prediction Using Optimized and Explainable Machine Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rocío Aznar-Gimeno & Luis M. Esteban & Gorka Labata-Lezaun & Rafael del-Hoyo-Alonso & David Abadia-Gallego & J. Ramón Paño-Pardo & M. José Esquillor-Rodrigo & Ángel Lanas & M. Trinidad Serrano, 2021. "A Clinical Decision Web to Predict ICU Admission or Death for Patients Hospitalised with COVID-19 Using Machine Learning Algorithms," IJERPH, MDPI, vol. 18(16), pages 1-20, August.
- Omar Badawi & Michael J Breslow, 2012. "Readmissions and Death after ICU Discharge: Development and Validation of Two Predictive Models," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-15, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
- Sara Saadatmand & Khodakaram Salimifard & Reza Mohammadi & Alex Kuiper & Maryam Marzban & Akram Farhadi, 2023. "Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients," Annals of Operations Research, Springer, vol. 328(1), pages 1043-1071, September.
- Álvaro Riascos & Natalia Serna & Marcela Granados & Fernando Rosso & Ramiro Guerrero, 2016. "Predicting readmissions, mortality, and infections in the ICU using Machine Learning Techniques," Documentos de Trabajo 15074, Quantil.
More about this item
Keywords
artificial intelligence; automated machine learning; Bayesian optimization; explainable machine learning; readmission; intensive care unit; machine learning; MIMIC; SHAP; XGBoost;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3455-:d:1070057. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.