IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p2999-d1062398.html
   My bibliography  Save this article

Damage Effect of Amorphous Carbon Black Nanoparticle Aggregates on Model Phospholipid Membranes: Surface Charge, Exposure Concentration and Time Dependence

Author

Listed:
  • Xiao-Feng Wang

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Kun Xu

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Xin-Rui Li

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Ya-Xin Liu

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

  • Jie-Min Cheng

    (College of Geography and Environment, Shandong Normal University, Jinan 250358, China)

Abstract

Commercial nano-scale carbon blacks (CB) are being harnessed widely and may impose potentially hazardous effects because of their unique properties, especially if they have been modified to grow reactive functional groups on their surface. Cytotoxicity of CB has been well studied but the membrane damage mechanisms and role of surface modification are still open to debate. Negatively and positively charged giant unilamellar vesicles (GUVs) were prepared using three lipids as model cell membranes to examine the mechanistic damage of CB and MCB (modified by acidic potassium permanganate) aggregates. Optical images showed that both anionic CB and MCB disrupted the positively charged but not the negatively charged GUVs. This disruption deteriorated with the rise and extension of exposure concentration and time. Lipids extraction caused by CBNs (CB and MCB together are called CBNs) was found. MCB caused more severe disruption than CB. MCB was enveloped into vesicles through an endocytosis-like process at 120 mg/L. MCB mediated the gelation of GUVs, perhaps through C-O-P bonding bridges. The lower hydrodynamic diameter and more negative charges may have been responsible for the distinction effect of MCB over CB. The adhesion and bonding of CBNs to the membrane were favored by electrostatic interaction and the practical application of CBNs warrants more attention.

Suggested Citation

  • Xiao-Feng Wang & Kun Xu & Xin-Rui Li & Ya-Xin Liu & Jie-Min Cheng, 2023. "Damage Effect of Amorphous Carbon Black Nanoparticle Aggregates on Model Phospholipid Membranes: Surface Charge, Exposure Concentration and Time Dependence," IJERPH, MDPI, vol. 20(4), pages 1-12, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2999-:d:1062398
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/2999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/2999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia Geng & Kyunghoon Kim & Jianfei Zhang & Artur Escalada & Ramya Tunuguntla & Luis R. Comolli & Frances I. Allen & Anna V. Shnyrova & Kang Rae Cho & Dayannara Munoz & Y. Morris Wang & Costas P. Grigo, 2014. "Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes," Nature, Nature, vol. 514(7524), pages 612-615, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D. Carrillo-Peña & R. Mateos & A. Morán & A. Escapa, 2024. "Use of Carbon-Based Additives in Bio-Electrochemically Assisted Anaerobic Digestion for Cheese Whey Valorisation," Energies, MDPI, vol. 17(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Sau Yin Law & Geoffrey Liou & Yukiko Nagai & Joan Giménez-Dejoz & Ayaka Tateishi & Kousuke Tsuchiya & Yutaka Kodama & Tsuyohiko Fujigaya & Keiji Numata, 2022. "Polymer-coated carbon nanotube hybrids with functional peptides for gene delivery into plant mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Weichao Peng & Shuaihu Yan & Ke Zhou & Hai-Chen Wu & Lei Liu & Yuliang Zhao, 2023. "High-resolution discrimination of homologous and isomeric proteinogenic amino acids in nanopore sensors with ultrashort single-walled carbon nanotubes," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Köhler, Mateus Henrique & Bordin, José Rafael & da Silva, Leandro B. & Barbosa, Marcia C., 2018. "Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 331-337.
    4. Weiwen Xin & Jingru Fu & Yongchao Qian & Lin Fu & Xiang-Yu Kong & Teng Ben & Lei Jiang & Liping Wen, 2022. "Biomimetic KcsA channels with ultra-selective K+ transport for monovalent ion sieving," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2999-:d:1062398. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.