IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2367-d1050066.html
   My bibliography  Save this article

A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils

Author

Listed:
  • Marcin Becher

    (Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, B. Prusa 14 St., 08-110 Siedlce, Poland)

  • Dorota Kalembasa

    (Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, B. Prusa 14 St., 08-110 Siedlce, Poland)

  • Stanisław Kalembasa

    (Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, B. Prusa 14 St., 08-110 Siedlce, Poland)

  • Barbara Symanowicz

    (Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, B. Prusa 14 St., 08-110 Siedlce, Poland)

  • Dawid Jaremko

    (Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, B. Prusa 14 St., 08-110 Siedlce, Poland)

  • Adam Matyszczak

    (Faculty of Agrobioengineering and Animal Husbandry, Siedlce University of Natural Sciences and Humanities, B. Prusa 14 St., 08-110 Siedlce, Poland)

Abstract

The aim of this study was to assess the transformation of organic matter in organic soils undergoing a phase of secondary transformation, based on a new method of nitrogen compound fractionation. Laboratory tests were carried out for 31 layers of muck (after secondary transformation) and peat (parent material of the soil) of drained organic soils (peat). The new method consists of sequential extraction in the following steps: (1) 0.5 M K 2 SO 4 (extraction at room temperature); (2) 0.25 M H 2 SO 4 (hot hydrolysis) (3) 3.0 M H 2 SO 4 (hot hydrolysis); and (4) concentrated H 2 SO 4 (mineralization of the post-extraction residue). As a result of the extraction process, the following fractions (operating forms) were obtained: mineral nitrogen (Nmin), dissolved organic nitrogen (N-DON), readily hydrolyzing organic nitrogen (N-RH), non-readily hydrolyzing organic nitrogen (N-NRH), and non-hydrolyzing organic nitrogen (N-NH). The study demonstrates the usefulness of the applied method for assessing the degree of secondary transformation of drained organic soils. The obtained results of nitrogen fractionation indicate the significant dynamics of nitrogen forms’ transformations and a significant relationship between these forms and soil properties. Nitrogen transformation processes during the secondary transformation process after dehydration resulted in an increase in the share of N-DON (on average: 1.47% of N org for the peat layers and 2.97% of Norg for the muck layers) and in an increase in the share of N RHON (on average: 20.7% of Norg for the peat layers and 33.5% of Norg for the muck layers). The method of sequential nitrogen fractionation used in our study allowed us to define an index determining the degree of transformation of organic matter in peat after drying. We defined it as the ratio of readily hydrolyzable forms (the fraction is very variable in the secondary transformation process) to non-readily hydrolyzable forms (relatively stable fraction in the secondary transformation process): N-RH/N-NRH. The average value of this index was significantly lower in the peat layers (0.64 on average) than in the muck beds (1.04 on average). The value of this index is significantly correlated with soil properties: bulk density (R 2 = 0.470); general porosity (R 2 = 0.503); total carbon content (TC) (R 2 = 0.425); total carbon to total nitrogen ratio (TC/TN) (R 2 = 0.619); and share of carbon of humic substances (C-HS) (R 2 = 0.466). We believe that the method of sequential nitrogen fractionation may be useful for other soils and organic materials.

Suggested Citation

  • Marcin Becher & Dorota Kalembasa & Stanisław Kalembasa & Barbara Symanowicz & Dawid Jaremko & Adam Matyszczak, 2023. "A New Method for Sequential Fractionation of Nitrogen in Drained Organic (Peat) Soils," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2367-:d:1050066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. Freeman & N. Fenner & N. J. Ostle & H. Kang & D. J. Dowrick & B. Reynolds & M. A. Lock & D. Sleep & S. Hughes & J. Hudson, 2004. "Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels," Nature, Nature, vol. 430(6996), pages 195-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Łachacz & Barbara Kalisz & Paweł Sowiński & Bożena Smreczak & Jacek Niedźwiecki, 2023. "Transformation of Organic Soils Due to Artificial Drainage and Agricultural Use in Poland," Agriculture, MDPI, vol. 13(3), pages 1-20, March.
    2. Barbara Symanowicz & Rafał Toczko, 2023. "Brown Coal Waste in Agriculture and Environmental Protection: A Review," Sustainability, MDPI, vol. 15(18), pages 1-14, September.
    3. Marcin Becher & Mirosław Kobierski & Krzysztof Pakuła & Dawid Jaremko, 2023. "Distribution of Mercury in Drained Peatlands as the Effect of Secondary Transformation of Soil Organic Matter," Agriculture, MDPI, vol. 13(5), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J Timothy Wootton & Catherine A Pfister, 2012. "Carbon System Measurements and Potential Climatic Drivers at a Site of Rapidly Declining Ocean pH," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-11, December.
    2. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    3. Jutras, Marie-France & Nasr, Mina & Castonguay, Mark & Pit, Christopher & Pomeroy, Joseph H. & Smith, Todd P. & Zhang, Cheng-fu & Ritchie, Charles D. & Meng, Fan-Rui & Clair, Thomas A. & Arp, Paul A., 2011. "Dissolved organic carbon concentrations and fluxes in forest catchments and streams: DOC-3 model," Ecological Modelling, Elsevier, vol. 222(14), pages 2291-2313.
    4. Yang, Yuangen & He, Zhenli & Wang, Yanbo & Fan, Jinghua & Liang, Zhanbei & Stoffella, Peter J., 2013. "Dissolved organic matter in relation to nutrients (N and P) and heavy metals in surface runoff water as affected by temporal variation and land uses – A case study from Indian River Area, south Florid," Agricultural Water Management, Elsevier, vol. 118(C), pages 38-49.
    5. Ianis Delpla & Donald T. Monteith & Chris Freeman & Joris Haftka & Joop Hermens & Timothy G. Jones & Estelle Baurès & Aude-Valérie Jung & Olivier Thomas, 2014. "A Decision Support System for Drinking Water Production Integrating Health Risks Assessment," IJERPH, MDPI, vol. 11(7), pages 1-22, July.
    6. Di Zhao & Junyu Dong & Shuping Ji & Miansong Huang & Quan Quan & Jian Liu, 2020. "Effects of Contemporary Land Use Types and Conversions from Wetland to Paddy Field or Dry Land on Soil Organic Carbon Fractions," Sustainability, MDPI, vol. 12(5), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2367-:d:1050066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.