IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p1969-d1042852.html
   My bibliography  Save this article

Examining the Nonlinear Effects of Residential and Workplace-built Environments on Active Travel in Short-Distance: A Random Forest Approach

Author

Listed:
  • Liang Guo

    (School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan 430000, China
    The Key Laboratory of Urban Simulation for Ministry of Natural Resources, Wuhan 430000, China)

  • Shuo Yang

    (School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan 430000, China
    The Key Laboratory of Urban Simulation for Ministry of Natural Resources, Wuhan 430000, China)

  • Yuqing Peng

    (School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan 430000, China
    The Key Laboratory of Urban Simulation for Ministry of Natural Resources, Wuhan 430000, China)

  • Man Yuan

    (School of Architecture & Urban Planning, Huazhong University of Science and Technology, Wuhan 430000, China
    The Key Laboratory of Urban Simulation for Ministry of Natural Resources, Wuhan 430000, China)

Abstract

Environmental pollution and health problems caused by the excessive use of motor vehicles have received widespread attention from all over the world. Currently, research lacks attention to the nonlinear effects of the built environment on short-distance active travel choices. It is important to understand these non-linear correlations, because it would be more feasible and necessary to promote a shift from car users to walking and cycling mode choices over short commuting distances. A random forest model was used to analyze the nonlinear effects of residents’ social characteristics and the built environment of their homes and workplaces on their choice of walking and cycling. The results show that the built environment has a greater impact on short-distance active travel than the socio-demographics attributes. Residential and workplace-built environments have equal importance and they have significant non-linear effects on both short-distance walking and cycling. The nonlinear effects of the built environment on walking and cycling differed significantly, and the study specifically revealed these effects.

Suggested Citation

  • Liang Guo & Shuo Yang & Yuqing Peng & Man Yuan, 2023. "Examining the Nonlinear Effects of Residential and Workplace-built Environments on Active Travel in Short-Distance: A Random Forest Approach," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1969-:d:1042852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/1969/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/1969/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Chuan & Cao, Xinyu & Wang, Yunpeng, 2018. "Synergistic effects of the built environment and commuting programs on commute mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 104-118.
    2. Peng Zang & Hualong Qiu & Fei Xian & Linchuan Yang & Yanan Qiu & Hongxu Guo, 2022. "Nonlinear Effects of the Built Environment on Light Physical Activity among Older Adults: The Case of Lanzhou, China," IJERPH, MDPI, vol. 19(14), pages 1-15, July.
    3. van den Berg, Pauline & Arentze, Theo & Timmermans, Harry, 2011. "Estimating social travel demand of senior citizens in the Netherlands," Journal of Transport Geography, Elsevier, vol. 19(2), pages 323-331.
    4. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    5. Neves, Andre & Brand, Christian, 2019. "Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 130-146.
    6. Hu, Lingqian & Schneider, Robert J., 2017. "Different ways to get to the same workplace: How does workplace location relate to commuting by different income groups?," Transport Policy, Elsevier, vol. 59(C), pages 106-115.
    7. Xu, Yiming & Yan, Xiang & Liu, Xinyu & Zhao, Xilei, 2021. "Identifying key factors associated with ridesplitting adoption rate and modeling their nonlinear relationships," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 170-188.
    8. Tae-Hyoung Tommy Gim, 2013. "The relationships between land use measures and travel behavior: a meta-analytic approach," Transportation Planning and Technology, Taylor & Francis Journals, vol. 36(5), pages 413-434, July.
    9. Roger Mackett, 2003. "Why do people use their cars for short trips?," Transportation, Springer, vol. 30(3), pages 329-349, August.
    10. Bergström, A. & Magnusson, R., 2003. "Potential of transferring car trips to bicycle during winter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(8), pages 649-666, October.
    11. Wang, Dongeen & Lin, Tao, 2014. "Residential self-selection, built environment, and travel behavior in the Chinese context," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(3), pages 5-14.
    12. Jonas De Vos & Patricia L. Mokhtarian & Tim Schwanen & Veronique Van Acker & Frank Witlox, 2016. "Travel mode choice and travel satisfaction: bridging the gap between decision utility and experienced utility," Transportation, Springer, vol. 43(5), pages 771-796, September.
    13. Yang, Linchuan & Ao, Yibin & Ke, Jintao & Lu, Yi & Liang, Yuan, 2021. "To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults," Journal of Transport Geography, Elsevier, vol. 94(C).
    14. Frank, Lawrence Douglas & Saelens, Brian E. & Powell, Ken E. & Chapman, James E., 2007. "Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity?," Social Science & Medicine, Elsevier, vol. 65(9), pages 1898-1914, November.
    15. Sungyop Kim & Gudmundur Ulfarsson, 2008. "Curbing automobile use for sustainable transportation: analysis of mode choice on short home-based trips," Transportation, Springer, vol. 35(6), pages 723-737, November.
    16. Cervero, Robert B., 2013. "Linking urban transport and land use in developing countries," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(1), pages 7-24.
    17. Ming Li & Guohua Song & Ying Cheng & Lei Yu, 2015. "Identification of Prior Factors Influencing the Mode Choice of Short Distance Travel," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-9, February.
    18. Brand, Christian & Goodman, Anna & Rutter, Harry & Song, Yena & Ogilvie, David, 2013. "Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel," Applied Energy, Elsevier, vol. 104(C), pages 158-169.
    19. Zhang, Lei & Hong, Jin Hyun & Nasri, Arefeh & Shen, Qing, 2012. "How built environment affects travel behavior: A comparative analysis of the connections between land use and vehicle miles traveled in US cities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 40-52.
    20. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Shuo & Zhou, Leyu & Liu, Chang & Sun, Shan & Guo, Liang & Sun, Xiaoli, 2024. "Examining multiscale built environment interventions to mitigate travel-related carbon emissions," Journal of Transport Geography, Elsevier, vol. 119(C).
    2. Long, Yi & Ao, Yibin & Li, Haimei & Bahmani, Homa & Li, Mingyang, 2024. "Non-linear effects of children's daily travel distance on their travel mode choice considering different destinations," Journal of Transport Geography, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang Guo & Shuo Yang & Qinghao Zhang & Leyu Zhou & Hui He, 2023. "Examining the Nonlinear and Synergistic Effects of Multidimensional Elements on Commuting Carbon Emissions: A Case Study in Wuhan, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    2. Liang Guo & Wenjun Cheng & Chang Liu & Qinghao Zhang & Shuo Yang, 2023. "Exploring the Spatial Heterogeneity and Influence Factors of Daily Travel Carbon Emissions in Metropolitan Areas: From the Perspective of the 15-min City," Land, MDPI, vol. 12(2), pages 1-22, January.
    3. Yang, Yongjiang & Sasaki, Kuniaki & Cheng, Long & Tao, Sui, 2022. "Does the built environment matter for active travel among older adults: Insights from Chiba City, Japan," Journal of Transport Geography, Elsevier, vol. 101(C).
    4. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    5. Tao, Tao & Cao, Jason, 2023. "Exploring nonlinear and collective influences of regional and local built environment characteristics on travel distances by mode," Journal of Transport Geography, Elsevier, vol. 109(C).
    6. Tong, Zhaomin & An, Rui & Zhang, Ziyi & Liu, Yaolin & Luo, Minghai, 2022. "Exploring non-linear and spatially non-stationary relationships between commuting burden and built environment correlates," Journal of Transport Geography, Elsevier, vol. 104(C).
    7. Tae-Hyoung Tommy Gim, 2023. "Residential self-selection or socio-ecological interaction? the effects of sociodemographic and attitudinal characteristics on the built environment–travel behavior relationship," Transportation, Springer, vol. 50(4), pages 1347-1398, August.
    8. Zhao, Chunli & Nielsen, Thomas Alexander Sick & Olafsson, Anton Stahl & Carstensen, Trine Agervig & Meng, Xiaoying, 2018. "Urban form, demographic and socio-economic correlates of walking, cycling, and e-biking: Evidence from eight neighborhoods in Beijing," Transport Policy, Elsevier, vol. 64(C), pages 102-112.
    9. Yang, Linchuan & Ao, Yibin & Ke, Jintao & Lu, Yi & Liang, Yuan, 2021. "To walk or not to walk? Examining non-linear effects of streetscape greenery on walking propensity of older adults," Journal of Transport Geography, Elsevier, vol. 94(C).
    10. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    11. Wang, Fenglong & Mao, Zidan & Wang, Donggen, 2020. "Residential relocation and travel satisfaction change: An empirical study in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 341-353.
    12. Haseeb, Attiya & Mitra, Raktim, 2024. "Travel behaviour changes among young adults and associated implications for social sustainability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 187(C).
    13. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu (Jason) & Yang, Jiawen, 2023. "Built environment interventions for emission mitigation: A machine learning analysis of travel-related CO2 in a developing city," Journal of Transport Geography, Elsevier, vol. 110(C).
    14. Zuo, Ting & Wei, Heng & Liu, Hao & Yang, Y. Jeffrey, 2019. "Bi-level optimization approach for configuring population and employment distributions with minimized vehicle travel demand," Journal of Transport Geography, Elsevier, vol. 74(C), pages 161-172.
    15. Yang, Hongtai & Luo, Peng & Li, Chaojing & Zhai, Guocong & Yeh, Anthony G.O., 2023. "Nonlinear effects of fare discounts and built environment on ridesplitting adoption rates," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    16. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    17. De Vos, Jonas & Mouratidis, Kostas & Cheng, Long & Kamruzzaman, Md., 2021. "Does a residential relocation enable satisfying travel?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 188-201.
    18. Gao, Kun & Yang, Ying & Gil, Jorge & Qu, Xiaobo, 2023. "Data-driven interpretation on interactive and nonlinear effects of the correlated built environment on shared mobility," Journal of Transport Geography, Elsevier, vol. 110(C).
    19. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    20. Etminani-Ghasrodashti, Roya & Ardeshiri, Mahyar, 2016. "The impacts of built environment on home-based work and non-work trips: An empirical study from Iran," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 196-207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:1969-:d:1042852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.