IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i2p1201-d1030475.html
   My bibliography  Save this article

Combining Bayesian Calibration and Copula Models for Age Estimation

Author

Listed:
  • Andrea Faragalli

    (Center of Epidemiology, Biostatistics and Medical Information Technology, Università Politecnica delle Marche, 60121 Ancona, Italy)

  • Edlira Skrami

    (Center of Epidemiology, Biostatistics and Medical Information Technology, Università Politecnica delle Marche, 60121 Ancona, Italy)

  • Andrea Bucci

    (Department of Economics, Università degli Studi G. d’Annunzio of Chieti-Pescara, 65127 Pescara, Italy
    Department of Economics and Law, University of Macerata, 62100 Macerata, Italy)

  • Rosaria Gesuita

    (Center of Epidemiology, Biostatistics and Medical Information Technology, Università Politecnica delle Marche, 60121 Ancona, Italy)

  • Roberto Cameriere

    (AgEstimation Project, University of Macerata, 62100 Macerata, Italy)

  • Flavia Carle

    (Center of Epidemiology, Biostatistics and Medical Information Technology, Università Politecnica delle Marche, 60121 Ancona, Italy
    These authors contributed equally to this work.)

  • Luigi Ferrante

    (Center of Epidemiology, Biostatistics and Medical Information Technology, Università Politecnica delle Marche, 60121 Ancona, Italy
    These authors contributed equally to this work.)

Abstract

Accurately estimating and predicting chronological age from some anthropometric characteristics of an individual without an identity document can be crucial in the context of a growing number of forced migrants. In the related literature, the prediction of chronological age mostly relies upon the use of a single predictor, which is usually represented by a dental/skeletal maturity index, or multiple independent ordinal predictor (stage of maturation). This paper is the first attempt to combine a robust method to predict chronological age, such as Bayesian calibration, and the use of multiple continuous indices as predictors. The combination of these two aspects becomes possible due to the implementation of a complex statistical tool as the copula. Comparing the forecasts from our copula-based method with predictions from an independent model and two single predictor models, we showed that the accuracy increased.

Suggested Citation

  • Andrea Faragalli & Edlira Skrami & Andrea Bucci & Rosaria Gesuita & Roberto Cameriere & Flavia Carle & Luigi Ferrante, 2023. "Combining Bayesian Calibration and Copula Models for Age Estimation," IJERPH, MDPI, vol. 20(2), pages 1-13, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1201-:d:1030475
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/2/1201/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/2/1201/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew J. Patton, 2006. "Estimation of multivariate models for time series of possibly different lengths," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(2), pages 147-173, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    2. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    3. Bernardi, Mauro & Catania, Leopoldo, 2018. "Portfolio optimisation under flexible dynamic dependence modelling," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 1-18.
    4. Chao Xu & Jinchuan Ke & Xiaojun Zhao & Xiaofang Zhao, 2020. "Multiscale Quantile Correlation Coefficient: Measuring Tail Dependence of Financial Time Series," Sustainability, MDPI, vol. 12(12), pages 1-24, June.
    5. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    6. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    7. Raza, Hamid & Wu, Weiou, 2018. "Quantile dependence between the stock, bond and foreign exchange markets – Evidence from the UK," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 286-296.
    8. Hachmi Ben Ameur & Zied Ftiti & Fredj Jawadi & Wael Louhichi, 2022. "Measuring extreme risk dependence between the oil and gas markets," Annals of Operations Research, Springer, vol. 313(2), pages 755-772, June.
    9. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    10. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    11. Hussain, Saiful Izzuan & Li, Steven, 2018. "The dependence structure between Chinese and other major stock markets using extreme values and copulas," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 421-437.
    12. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    13. Hafner, Christian M. & Linton, Oliver, 2010. "Efficient estimation of a multivariate multiplicative volatility model," Journal of Econometrics, Elsevier, vol. 159(1), pages 55-73, November.
    14. Leopoldo Catania, 2016. "Dynamic Adaptive Mixture Models," Papers 1603.01308, arXiv.org, revised Jan 2023.
    15. Paravee Maneejuk & Woraphon Yamaka, 2019. "Predicting Contagion from the US Financial Crisis to International Stock Markets Using Dynamic Copula with Google Trends," Mathematics, MDPI, vol. 7(11), pages 1-29, November.
    16. Reboredo, Juan C., 2011. "How do crude oil prices co-move?: A copula approach," Energy Economics, Elsevier, vol. 33(5), pages 948-955, September.
    17. Xu, Qifa & Fan, Zhenhua & Jia, Weiyin & Jiang, Cuixia, 2020. "Fault detection of wind turbines via multivariate process monitoring based on vine copulas," Renewable Energy, Elsevier, vol. 161(C), pages 939-955.
    18. José Murteira & Óscar Lourenço, 2011. "Health care utilization and self-assessed health: specification of bivariate models using copulas," Empirical Economics, Springer, vol. 41(2), pages 447-472, October.
    19. Mensah, Jones Odei & Premaratne, Gamini, 2014. "Dependence patterns among Banking Sectors in Asia: A Copula Approach," MPRA Paper 60119, University Library of Munich, Germany.
    20. Lu, Xiaohui & Zheng, Xu, 2020. "A goodness-of-fit test for copulas based on martingale transformation," Journal of Econometrics, Elsevier, vol. 215(1), pages 84-117.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1201-:d:1030475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.