IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i15p6528-d1211091.html
   My bibliography  Save this article

The Status of Sanitation in Malawi: Is SDG6.2 Achievable?

Author

Listed:
  • Rebekah G. K. Hinton

    (Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK
    The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK)

  • Christopher J. A. Macleod

    (The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK)

  • Mads Troldborg

    (The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK)

  • Modesta B. Kanjaye

    (Ministry of Water and Sanitation, Government of Malawi, Private Bag 390, Lilongwe, Malawi)

  • Robert M. Kalin

    (Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK)

Abstract

Ensuring access to adequate and equitable sanitation and ending open defecation by 2030 is the focus of Sustainable Development Goal 6.2 (SDG6.2). We evaluated Malawi’s progress towards SDG 6.2 (specifically the goal to end open defecation), presenting the results of a national survey of over 200,000 sanitary facilities and evaluating their management. Based on non-linear population dynamics, we used a linear model to evaluate the reduction in open defecation between 1992–2018, and to project whether Malawi can meet the SDG target to end open defecation by 2030 under multiple scenarios of population growth. Whilst Malawi has made considerable progress in providing sanitary provision for the population, we estimate that, at the current rate of the provision of sanitary facilities, Malawi will not reach SDG 6.2 by 2030 under any of the modelled socioeconomic scenarios. Furthermore, we compare the estimates of the extent of sanitary provision classed as improved from multiple surveys, including the USAID Demographic and Health (DHS) Surveys and Government of Malawi Census data. We conclude that some of the surveys (particularly the 2015/16 DHS) may be overestimating the level of improved sanitary provision, and we hypothesize that this is due to how pit-latrines with earth/sand slabs are classed. Furthermore, we examine the long-term sustainability of pit-latrine use, investigating the challenge of pit-latrine abandonment and identifying pit-latrine filling as a cause of the abandonment in 30.2% of cases. We estimate that between 2020–2070, 31.8 (range 2.8 to 3320) million pit-latrines will be filled and abandoned, representing a major challenge for the safe management of abandoned latrines, a potential for long-term impacts on the groundwater quality, and a significant loss of investment in sanitary infrastructure. For Malawi to reach SDG 6.2, improvements are needed in both the quantity and quality of its sanitary facilities.

Suggested Citation

  • Rebekah G. K. Hinton & Christopher J. A. Macleod & Mads Troldborg & Modesta B. Kanjaye & Robert M. Kalin, 2023. "The Status of Sanitation in Malawi: Is SDG6.2 Achievable?," IJERPH, MDPI, vol. 20(15), pages 1-20, August.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:15:p:6528-:d:1211091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/15/6528/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/15/6528/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xue Bai & Kai Song & Jian Liu & Adam Khalifa Mohamed & Chenya Mou & Dan Liu, 2019. "Health Risk Assessment of Groundwater Contaminated by Oil Pollutants Based on Numerical Modeling," IJERPH, MDPI, vol. 16(18), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanru Zhang & Peng Lu & Yi Huang, 2023. "The Interference of Pre-Processing Software for the Numerical Simulation of Groundwater on the Cognition of Environmental Students: Model Mesh Construction as an Example," IJERPH, MDPI, vol. 20(2), pages 1-11, January.
    2. Liang Xiao & Yong Zhou & He Huang & Yu-Jie Liu & Ke Li & Meng-Yao Li & Yang Tian & Fei Wu, 2020. "Application of Geostatistical Analysis and Random Forest for Source Analysis and Human Health Risk Assessment of Potentially Toxic Elements (PTEs) in Arable Land Soil," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    3. Fei Wang & Kai Song & Xuelian He & Yue Peng & Dan Liu & Jian Liu, 2021. "Identification of Groundwater Pollution Characteristics and Health Risk Assessment of a Landfill in a Low Permeability Area," IJERPH, MDPI, vol. 18(14), pages 1-19, July.
    4. Eden Alexandre Nsimba & Ntokozo Malaza & Thandazile Marazula, 2023. "Protecting Cape Town’s Groundwater from Fuel Stations: An In-Depth Analysis of Regulatory Requirements," Sustainability, MDPI, vol. 15(20), pages 1-13, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:15:p:6528-:d:1211091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.