Evaluating Time Influence over Performance of Machine-Learning-Based Diagnosis: A Case Study of COVID-19 Pandemic in Brazil
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mukund Sundararajan & Amir Najmi, 2019. "The many Shapley values for model explanation," Papers 1908.08474, arXiv.org, revised Feb 2020.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alireza Rezazadeh & Yasamin Jafarian & Ali Kord, 2022. "Explainable Ensemble Machine Learning for Breast Cancer Diagnosis Based on Ultrasound Image Texture Features," Forecasting, MDPI, vol. 4(1), pages 1-13, February.
- Hu'e Sullivan & Hurlin Christophe & P'erignon Christophe & Saurin S'ebastien, 2022. "Measuring the Driving Forces of Predictive Performance: Application to Credit Scoring," Papers 2212.05866, arXiv.org, revised Jan 2025.
- Hugh Chen & Scott M. Lundberg & Su-In Lee, 2022. "Explaining a series of models by propagating Shapley values," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2021. "Cohort Shapley value for algorithmic fairness," Papers 2105.07168, arXiv.org.
- Wenguang Zhang & Ting Lei & Yu Gong & Jun Zhang & Yirong Wu, 2022. "Using Explainable Artificial Intelligence to Identify Key Characteristics of Deep Poverty for Each Household," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
- Masayoshi Mase & Art B. Owen & Benjamin B. Seiler, 2022. "Variable importance without impossible data," Papers 2205.15750, arXiv.org, revised Apr 2023.
- Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).
- Ronald Richman & Mario V. Wuthrich, 2021. "LocalGLMnet: interpretable deep learning for tabular data," Papers 2107.11059, arXiv.org.
- Kumar, Rishabh & Koshiyama, Adriano & da Costa, Kleyton & Kingsman, Nigel & Tewarrie, Marvin & Kazim, Emre & Roy, Arunita & Treleaven, Philip & Lovell, Zac, 2023. "Deep learning model fragility and implications for financial stability and regulation," Bank of England working papers 1038, Bank of England.
- Joohyun Jang & Woonyoung Jeong & Sangmin Kim & Byeongcheon Lee & Miyoung Lee & Jihoon Moon, 2023. "RAID: Robust and Interpretable Daily Peak Load Forecasting via Multiple Deep Neural Networks and Shapley Values," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
- Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
- Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
- Chen, Yujia & Calabrese, Raffaella & Martin-Barragan, Belen, 2024. "Interpretable machine learning for imbalanced credit scoring datasets," European Journal of Operational Research, Elsevier, vol. 312(1), pages 357-372.
- Disha Bhattacharyya & Sudeep Pradhan & Shabbiruddin, 2023. "Barriers in Replacement of Conventional Vehicles by Electric Vehicles in India: A Decision-Making Approach," International Journal of Decision Support System Technology (IJDSST), IGI Global, vol. 15(1), pages 1-20, January.
- Farshad Khavari & Jay Liu, 2024. "A Hydrogen-Integrated Aggregator Model for Managing the Point of Common Coupling Congestion in Green Multi-Microgrids," Energies, MDPI, vol. 17(16), pages 1-20, August.
- Li, Wei & Becker, Denis Mike, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Energy, Elsevier, vol. 237(C).
- Lee Changro, 2022. "Training and Interpreting Machine Learning Models: Application in Property Tax Assessment," Real Estate Management and Valuation, Sciendo, vol. 30(1), pages 13-22, March.
- Wei Li & Denis Mike Becker, 2021. "Day-ahead electricity price prediction applying hybrid models of LSTM-based deep learning methods and feature selection algorithms under consideration of market coupling," Papers 2101.05249, arXiv.org, revised Jul 2021.
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2023.
"Credit growth, the yield curve and financial crisis prediction: Evidence from a machine learning approach,"
Journal of International Economics, Elsevier, vol. 145(C).
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kang, Miao & Kapadia, Sujit & Simsek, Özgür, 2020. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Bank of England working papers 848, Bank of England.
- Bluwstein, Kristina & Buckmann, Marcus & Joseph, Andreas & Kapadia, Sujit & Şimşek, Özgür, 2021. "Credit growth, the yield curve and financial crisis prediction: evidence from a machine learning approach," Working Paper Series 2614, European Central Bank.
- Mehmet Güney Celbiş & Pui‐hang Wong & Karima Kourtit & Peter Nijkamp, 2023. "Impacts of the COVID‐19 outbreak on older‐age cohorts in European Labor Markets: A machine learning exploration of vulnerable groups," Regional Science Policy & Practice, Wiley Blackwell, vol. 15(3), pages 559-584, April.
More about this item
Keywords
COVID-19; diagnosis; machine learning; feature importance; eXplainable AI;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2022:i:1:p:136-:d:1011392. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.