IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2793-d760185.html
   My bibliography  Save this article

Adsorption Properties and Mechanism of Attapulgite to Graphene Oxide in Aqueous Solution

Author

Listed:
  • Na Li

    (School of Civil Engineering, Shaoxing University, Shaoxing 312000, China)

  • Jiyuan Fang

    (School of Civil Engineering, Shaoxing University, Shaoxing 312000, China)

  • Ping Jiang

    (School of Civil Engineering, Shaoxing University, Shaoxing 312000, China)

  • Cuihong Li

    (School of Civil Engineering, Shaoxing University, Shaoxing 312000, China)

  • Haibo Kang

    (School of Civil Engineering, College of Transportation Engineering, Nanjing Tech University, Nanjing 210009, China)

  • Wei Wang

    (School of Civil Engineering, Shaoxing University, Shaoxing 312000, China
    Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore)

Abstract

In order to remove toxic graphene oxide (GO) from aqueous solution, attapulgite (ATP) was used as adsorbent to recycle it by adsorption. In this paper, the effects of different pH, adsorbent mass, GO concentration, time and temperature on the adsorption of GO by attapulgite were studied, and the adsorption performance and mechanism were further explored by XRD, AFM, XPS, FTIR, TEM and SEM tests. The results show that when T = 303 K, pH = 3, and the GO concentration is 100 mg/L in 50 mL of aqueous solution, the removal rate of GO by 40 mg of attapulgite reaches 92.83%, and the partition coefficient K d reaches 16.31. The adsorption kinetics results showed that the adsorption equilibrium was reached at 2160 min, and the adsorption process could be described by the pseudo-second-order adsorption equation, indicating that the adsorption process was accompanied by chemical adsorption and physical adsorption. The isotherm and thermodynamic parameters show that the adsorption of GO by attapulgite is more consistent with the Langmuir isotherm model, and the reaction is a spontaneous endothermic process. The analysis shows that attapulgite is a good material for removing GO, which can provide a reference for the removal of GO in an aqueous environment.

Suggested Citation

  • Na Li & Jiyuan Fang & Ping Jiang & Cuihong Li & Haibo Kang & Wei Wang, 2022. "Adsorption Properties and Mechanism of Attapulgite to Graphene Oxide in Aqueous Solution," IJERPH, MDPI, vol. 19(5), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2793-:d:760185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lianqin Zhao & Sheng-Tao Yang & Shicheng Feng & Qiang Ma & Xiaoling Peng & Deyi Wu, 2017. "Preparation and Application of Carboxylated Graphene Oxide Sponge in Dye Removal," IJERPH, MDPI, vol. 14(11), pages 1-13, October.
    2. Krzysztof Piaskowski & Paweł K. Zarzycki, 2020. "Carbon-Based Nanomaterials as Promising Material for Wastewater Treatment Processes," IJERPH, MDPI, vol. 17(16), pages 1-14, August.
    3. Mohammed Umar Abba & Hasfalina Che Man & Raba’ah Syahidah Azis & Aida Isma Idris & Muhammad Hazwan Hamzah & Mohammed Abdulsalam, 2021. "Synthesis of Nano-Magnetite from Industrial Mill Chips for the Application of Boron Removal: Characterization and Adsorption Efficacy," IJERPH, MDPI, vol. 18(4), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sana Farooq & Humera Aziz & Shafaqat Ali & Ghulam Murtaza & Muhammad Rizwan & Muhammad Hamzah Saleem & Shahid Mahboob & Khalid A. Al-Ghanim & Mian N. Riaz & Behzad Murtaza, 2022. "Synthesis of Functionalized Carboxylated Graphene Oxide for the Remediation of Pb and Cr Contaminated Water," IJERPH, MDPI, vol. 19(17), pages 1-18, August.
    2. Qiuxuan Wu & Rui Zhang & Xiaoxiang Wang & Yizhuo Li, 2022. "A Theoretical Study of the Interactions between Persistent Organic Pollutants and Graphene Oxide," IJERPH, MDPI, vol. 19(18), pages 1-11, September.
    3. Li Liu & Shisuo Fan & Yang Li, 2018. "Removal Behavior of Methylene Blue from Aqueous Solution by Tea Waste: Kinetics, Isotherms and Mechanism," IJERPH, MDPI, vol. 15(7), pages 1-16, June.
    4. Jinyuan Zhu & Yingying Zhu & Zhen Chen & Sijia Wu & Xiaojian Fang & Yan Yao, 2022. "Progress in the Preparation and Modification of Zinc Ferrites Used for the Photocatalytic Degradation of Organic Pollutants," IJERPH, MDPI, vol. 19(17), pages 1-32, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2793-:d:760185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.