IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i3p1282-d731988.html
   My bibliography  Save this article

COVID-19 Pandemic Lockdown: An Excellent Opportunity to Study the Effects of Trawling Disturbance on Macrobenthic Fauna in the Shallow Waters of the Gulf of Gabès (Tunisia, Central Mediterranean Sea)

Author

Listed:
  • Nawfel Mosbahi

    (Laboratoire de Biodiversité Marine et Environnement, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, Sfax 3038, Tunisia)

  • Jean-Philippe Pezy

    (Laboratoire Morphodynamique Continentale et Côtière, Normandie University, UNICAEN, CNRS, UMR 6143 M2C, 24 Rue des Tilleuls, 14000 Caen, France)

  • Jean-Claude Dauvin

    (Laboratoire Morphodynamique Continentale et Côtière, Normandie University, UNICAEN, CNRS, UMR 6143 M2C, 24 Rue des Tilleuls, 14000 Caen, France)

  • Lassad Neifar

    (Laboratoire de Biodiversité Marine et Environnement, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, Sfax 3038, Tunisia)

Abstract

This study describes for the first time in the central Mediterranean Sea the effects of bottom trawling on macrobenthic fauna in tidal channels of the Kneiss Islands in the Gulf of Gabès, Tunisia. Following a BACI protocol, two control stations (protected by artificial reefs) and two trawled stations (impacted stations) were sampled during a period with the absence of bottom trawling activity (the COVID-19 pandemic lockdown period from March to May 2020) and during a trawled period. Although bottom trawling had no impact on sediment composition, this anthropogenic activity reduced the concentration of dissolved oxygen and had a noticeable effect on water column turbidity. The absence of trawling led to a significant increase in biomass, number of species, and abundance of total macrofauna. This illustrated the negative effect of trawling activity in shallow waters and the high resilience of macrobenthic communities of the tidal ecosystem of the Kneiss Islands. In the future, it would be very important to control the use of this destructive fishing gear due to its negative impact on the marine habitat and macrofauna, which represents essential prey for fishes and birds living in this protected area.

Suggested Citation

  • Nawfel Mosbahi & Jean-Philippe Pezy & Jean-Claude Dauvin & Lassad Neifar, 2022. "COVID-19 Pandemic Lockdown: An Excellent Opportunity to Study the Effects of Trawling Disturbance on Macrobenthic Fauna in the Shallow Waters of the Gulf of Gabès (Tunisia, Central Mediterranean Sea)," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1282-:d:731988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/3/1282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/3/1282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pere Puig & Miquel Canals & Joan B. Company & Jacobo Martín & David Amblas & Galderic Lastras & Albert Palanques & Antoni M. Calafat, 2012. "Ploughing the deep sea floor," Nature, Nature, vol. 489(7415), pages 286-289, September.
    2. Halouani, Ghassen & Ben Rais Lasram, Frida & Shin, Yunne-Jai & Velez, Laure & Verley, Philippe & Hattab, Tarek & Oliveros-Ramos, Ricardo & Diaz, Frédéric & Ménard, Frédéric & Baklouti, Melika & Guyenn, 2016. "Modelling food web structure using an end-to-end approach in the coastal ecosystem of the Gulf of Gabes (Tunisia)," Ecological Modelling, Elsevier, vol. 339(C), pages 45-57.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xing, Lei & Zhang, Chongliang & Chen, Yong & Shin, Yunne-Jai & Verley, Philippe & Yu, Haiqing & Ren, Yiping, 2017. "An individual-based model for simulating the ecosystem dynamics of Jiaozhou Bay, China," Ecological Modelling, Elsevier, vol. 360(C), pages 120-131.
    2. Grüss, Arnaud & Palomares, Maria L.D. & Poelen, Jorrit H. & Barile, Josephine R. & Aldemita, Casey D. & Ortiz, Shelumiel R. & Barrier, Nicolas & Shin, Yunne-Jai & Simons, James & Pauly, Daniel, 2019. "Building bridges between global information systems on marine organisms and ecosystem models," Ecological Modelling, Elsevier, vol. 398(C), pages 1-19.
    3. Eli D. Lazarus, 2017. "Toward a Global Classification of Coastal Anthromes," Land, MDPI, vol. 6(1), pages 1-27, February.
    4. Bănaru, Daniela & Diaz, Fréderic & Verley, Philippe & Campbell, Rose & Navarro, Jonathan & Yohia, Christophe & Oliveros-Ramos, Ricardo & Mellon-Duval, Capucine & Shin, Yunne-Jai, 2019. "Implementation of an end-to-end model of the Gulf of Lions ecosystem (NW Mediterranean Sea). I. Parameterization, calibration and evaluation," Ecological Modelling, Elsevier, vol. 401(C), pages 1-19.
    5. Torres, María Ángeles & Coll, Marta & Heymans, Johanna Jacomina & Christensen, Villy & Sobrino, Ignacio, 2013. "Food-web structure of and fishing impacts on the Gulf of Cadiz ecosystem (South-western Spain)," Ecological Modelling, Elsevier, vol. 265(C), pages 26-44.
    6. Xing, Lei & Chen, Yong & Zhang, Chongliang & Li, Bai & Tanaka, Kisei R. & Boenish, Robert & Ren, Yiping, 2020. "Evaluating impacts of imprecise parameters on the performance of an ecosystem model OSMOSE-JZB," Ecological Modelling, Elsevier, vol. 419(C).
    7. Scott Moore & Dale Squires, 2016. "Governing the Depths: Conceptualizing the Politics of Deep Sea Resources," Global Environmental Politics, MIT Press, vol. 16(2), pages 101-109, May.
    8. Travers-Trolet, Morgane & Coppin, Franck & Cresson, Pierre & Cugier, Philippe & Oliveros-Ramos, Ricardo & Verley, Philippe, 2019. "Emergence of negative trophic level-size relationships from a size-based, individual-based multispecies fish model," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    9. Hill Cruz, Mariana & Frenger, Ivy & Getzlaff, Julia & Kriest, Iris & Xue, Tianfei & Shin, Yunne-Jai, 2022. "Understanding the drivers of fish variability in an end-to-end model of the Northern Humboldt Current System," Ecological Modelling, Elsevier, vol. 472(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1282-:d:731988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.