IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16962-d1006243.html
   My bibliography  Save this article

Marginal Effects and Spatial Variations of the Impact of the Built Environment on Taxis’ Pollutant Emissions in Chengdu, China

Author

Listed:
  • Guanwei Zhao

    (School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Zeyu Pan

    (School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

  • Muzhuang Yang

    (School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China)

Abstract

Understanding the impact of the urban built environment on taxis’ emissions is crucial for sustainable transportation. However, the marginal effects and spatial heterogeneity of this impact is worth noting. To this end, we calculated the taxis’ emissions on weekdays and weekends in Chengdu, China, and investigated the impact of the built environment on taxis’ emissions by applying multi-source data and several spatial regression models. The results showed that the taxis’ daily emissions on weekdays were higher than the emissions on weekends. The time heterogeneity of hourly taxis’ emissions was not significant, while the spatial heterogeneity of taxis’ emissions was significant. Except the HHI, the selected built environment variables both had a significant positive effect on taxis’ emissions on the global scale. There was a marginal effect of some built environment variables on taxis’ emissions, such as the density of bus stops and population density. The former exhibited an inhibitory effect on taxis’ emissions only when it was greater than 9 stops/km 2 , while the latter showed an inhibitory effect only in the range between 16,000 people/km 2 and 22,000 people/km 2 . There were some spatial variations in the effects of built environment factors on taxis’ emissions, with HHI, road density, and accommodation service facilities density showing the most significant variation. The marginal effect and spatial variation of the impact needs to be considered when developing strategies to reduce taxis’ pollutant emissions.

Suggested Citation

  • Guanwei Zhao & Zeyu Pan & Muzhuang Yang, 2022. "Marginal Effects and Spatial Variations of the Impact of the Built Environment on Taxis’ Pollutant Emissions in Chengdu, China," IJERPH, MDPI, vol. 19(24), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16962-:d:1006243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark R. Stevens, 2017. "Does Compact Development Make People Drive Less?," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(1), pages 7-18, January.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Jinlei Zhang & Feng Chen & Zijia Wang & Rui Wang & Shunwei Shi, 2018. "Spatiotemporal Patterns of Carbon Emissions and Taxi Travel Using GPS Data in Beijing," Energies, MDPI, vol. 11(3), pages 1-22, February.
    4. Zhou, Guanghui & Chung, William & Zhang, Xiliang, 2013. "A study of carbon dioxide emissions performance of China's transport sector," Energy, Elsevier, vol. 50(C), pages 302-314.
    5. Modarres, Ali, 2013. "Commuting and energy consumption: toward an equitable transportation policy," Journal of Transport Geography, Elsevier, vol. 33(C), pages 240-249.
    6. Wenyue Yang & Shaojian Wang & Xiaoming Zhao, 2018. "Measuring the Direct and Indirect Effects of Neighborhood-Built Environments on Travel-related CO 2 Emissions: A Structural Equation Modeling Approach," Sustainability, MDPI, vol. 10(5), pages 1-14, April.
    7. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    8. Brand, Christian & Goodman, Anna & Rutter, Harry & Song, Yena & Ogilvie, David, 2013. "Associations of individual, household and environmental characteristics with carbon dioxide emissions from motorised passenger travel," Applied Energy, Elsevier, vol. 104(C), pages 158-169.
    9. Gyo-Eon Shim & Sung-Mo Rhee & Kun-Hyuck Ahn & Sung-Bong Chung, 2006. "The relationship between the characteristics of transportation energy consumption and urban form," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 40(2), pages 351-367, June.
    10. Mark R. Stevens, 2017. "Response to Commentaries on “Does Compact Development Make People Drive Less?”," Journal of the American Planning Association, Taylor & Francis Journals, vol. 83(2), pages 151-158, April.
    11. Chuan Ding & Yaowu Wang & Binglei Xie & Chao Liu, 2014. "Understanding the Role of Built Environment in Reducing Vehicle Miles Traveled Accounting for Spatial Heterogeneity," Sustainability, MDPI, vol. 6(2), pages 1-13, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    2. Mouratidis, Kostas & Ettema, Dick & Næss, Petter, 2019. "Urban form, travel behavior, and travel satisfaction," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 306-320.
    3. Faizeh Hatami & Jean-Claude Thill, 2022. "Spatiotemporal Evaluation of the Built Environment’s Impact on Commuting Duration," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    4. Ding, Chuan & Cao, Xinyu (Jason) & Næss, Petter, 2018. "Applying gradient boosting decision trees to examine non-linear effects of the built environment on driving distance in Oslo," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 107-117.
    5. Bindong Sun & Rui Guo & Chun Yin, 2023. "Inequity on suburban campuses: University students disadvantaged in self‐improvement travel," Growth and Change, Wiley Blackwell, vol. 54(2), pages 404-420, June.
    6. Gao, Jiong & Ma, Shoufeng & Zou, Hongyang & Du, Huibin, 2023. "How does population agglomeration influence the adoption of new energy vehicles? Evidence from 290 cities in China," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    7. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    8. Zhao, Chuyun & Tang, Jinjun & Zeng, Yu & Li, Zhitao & Gao, Fan, 2023. "Understanding the spatio-temporally heterogeneous effects of built environment on urban travel emissions," Journal of Transport Geography, Elsevier, vol. 112(C).
    9. Charles Raux & Ayana Lamatkhanova & Lény Grassot, 2021. "Does the built environment shape commuting? The case of Lyon (France)," Post-Print halshs-03010833, HAL.
    10. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    12. Dubey, Subodh & Bansal, Prateek & Daziano, Ricardo A. & Guerra, Erick, 2020. "A Generalized Continuous-Multinomial Response Model with a t-distributed Error Kernel," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 114-141.
    13. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    14. Zhu, Pengyu & Tan, Xinying & Zhao, Songnian & Shi, Shuai & Wang, Mingshu, 2022. "Land use regulations, transit investment, and commuting preferences," Land Use Policy, Elsevier, vol. 122(C).
    15. Rahman, Mashrur & Sciara, Gian-Claudia, 2022. "Travel attitudes, the built environment and travel behavior relationships: Causal insights from social psychology theories," Transport Policy, Elsevier, vol. 123(C), pages 44-54.
    16. Ding, Chuan & Cao, Xinyu & Yu, Bin & Ju, Yang, 2021. "Non-linear associations between zonal built environment attributes and transit commuting mode choice accounting for spatial heterogeneity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 22-35.
    17. Adam Millard-Ball & Purva Kapshikar, 2024. "How land use patterns keep driving cheap: Geographic support for transportation taxes," Urban Studies, Urban Studies Journal Limited, vol. 61(7), pages 1345-1370, May.
    18. Lussier-Tomaszewski, P. & Boisjoly, G., 2021. "Thinking regional and acting local: Assessing the joint influence of local and regional accessibility on commute mode in Montreal, Canada," Journal of Transport Geography, Elsevier, vol. 90(C).
    19. Mitra, Suman K. & Saphores, Jean-Daniel M., 2019. "Why do they live so far from work? Determinants of long-distance commuting in California," Journal of Transport Geography, Elsevier, vol. 80(C).
    20. Kailai Wang & Xize Wang, 2022. "Generational Differences in Automobility: Comparing America's Millennials and Gen Xers Using Gradient Boosting Decision Trees," Papers 2206.11056, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16962-:d:1006243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.