IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16889-d1004976.html
   My bibliography  Save this article

Effects of Radiant Floor Heating Integrated with Natural Ventilation on Flow and Dispersion in a Newly Decorated Residence

Author

Listed:
  • Peng-Yi Cui

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Jia-Qi Wang

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Feng Yang

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Qing-Xia Zhao

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yuan-Dong Huang

    (School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China)

  • Yong Yang

    (College of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou 215000, China)

  • Wen-Quan Tao

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

To date, few studies have been conducted on the characteristics of flow and dispersion caused by indoor radiant floor heating integrated with natural ventilation. In this study, we employed reduced−scale numerical models validated by wind−tunnel experiments to investigate the influence of radiant floor heating integrated with natural ventilation on airflow, heat transfer, and pollutant dispersion within an isolated building. The Richardson number ( Ri ) was specified to characterize the interaction between the inflow inertia force and the buoyancy force caused by radiant floor heating. Several Ri cases from 0 to 26.65, coupled with cross− or single−sided ventilation, were considered. Model validation showed that the numerical model coupled with the RNG k - ε model was able to better predict the indoor buoyant flow and pollutant dispersion. The results showed that the similarity criterion of Ri equality should be first satisfied in order to study indoor mixed convection using the reduced−scale model, followed by Re −independence. For cross−ventilation, when Ri < 5.31, the incoming flow inertia force mainly dominates the indoor flow structure so that the ACH, indoor temperature, and pollutant distributions remain almost constant. When Ri > 5.31, the thermal buoyancy force becomes increasingly important, causing significant changes in indoor flow structures. However, for single−sided ventilation, when Ri > 5.31 and continues to increase, the buoyancy force mainly dominates the indoor flow structure, causing a significant increase in ACH, thus reducing the indoor average temperature and pollutant accumulation.

Suggested Citation

  • Peng-Yi Cui & Jia-Qi Wang & Feng Yang & Qing-Xia Zhao & Yuan-Dong Huang & Yong Yang & Wen-Quan Tao, 2022. "Effects of Radiant Floor Heating Integrated with Natural Ventilation on Flow and Dispersion in a Newly Decorated Residence," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16889-:d:1004976
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16889/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16889/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2016. "Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design," Applied Energy, Elsevier, vol. 182(C), pages 625-633.
    2. Calautit, John Kaiser & Hughes, Ben Richard, 2016. "A passive cooling wind catcher with heat pipe technology: CFD, wind tunnel and field-test analysis," Applied Energy, Elsevier, vol. 162(C), pages 460-471.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    2. Mao, Ning & Hao, Jingyu & He, Tianbiao & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2019. "PMV-based dynamic optimization of energy consumption for a residential task/ambient air conditioning system in different climate zones," Renewable Energy, Elsevier, vol. 142(C), pages 41-54.
    3. Omar Dhia Al-Hassawi & David Drake, 2023. "Innovations in Passive Downdraft Cooling Performance Evaluation Methods: Design and Construction of a Novel Environmental Test Chamber," Energies, MDPI, vol. 16(11), pages 1-20, May.
    4. Xu, Fusuo & Zhang, Jianshun & Gao, Zhi, 2024. "A case study of the effect of building surface cool and super cool materials on residential neighbourhood energy consumption in Nanjing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    5. Marian A. Nessim & Aya Elshabshiri & Virginia Bassily & Niriman Soliman & Khaled Tarabieh & Sherif Goubran, 2023. "The Rise and Evolution of Wind Tower Designs in Egypt and the Middle East," Sustainability, MDPI, vol. 15(14), pages 1-29, July.
    6. Alberto Meiss & Miguel A. Padilla-Marcos & Jesús Feijó-Muñoz, 2017. "Methodology Applied to the Evaluation of Natural Ventilation in Residential Building Retrofits: A Case Study," Energies, MDPI, vol. 10(4), pages 1-19, April.
    7. Chen, Yujiao & Tong, Zheming & Wu, Wentao & Samuelson, Holly & Malkawi, Ali & Norford, Leslie, 2019. "Achieving natural ventilation potential in practice: Control schemes and levels of automation," Applied Energy, Elsevier, vol. 235(C), pages 1141-1152.
    8. Fan, Yuling & Xia, Xiaohua, 2018. "Building retrofit optimization models using notch test data considering energy performance certificate compliance," Applied Energy, Elsevier, vol. 228(C), pages 2140-2152.
    9. Mao, Ning & Song, Mengjie & Pan, Dongmei & Deng, Shiming, 2018. "Comparative studies on using RSM and TOPSIS methods to optimize residential air conditioning systems," Energy, Elsevier, vol. 144(C), pages 98-109.
    10. Juan, Yu-Hsuan & Wen, Chih-Yung & Li, Zhengtong & Yang, An-Shik, 2021. "Impacts of urban morphology on improving urban wind energy potential for generic high-rise building arrays," Applied Energy, Elsevier, vol. 299(C).
    11. Jomehzadeh, Fatemeh & Nejat, Payam & Calautit, John Kaiser & Yusof, Mohd Badruddin Mohd & Zaki, Sheikh Ahmad & Hughes, Ben Richard & Yazid, Muhammad Noor Afiq Witri Muhammad, 2017. "A review on windcatcher for passive cooling and natural ventilation in buildings, Part 1: Indoor air quality and thermal comfort assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 736-756.
    12. Mao, Ning & Hao, Jingyu & Cui, Borui & Li, Yuxing & Song, Mengjie & Xu, Yingjie & Deng, Shiming, 2018. "Energy performance of a bedroom task/ambient air conditioning (TAC) system applied in different climate zones of China," Energy, Elsevier, vol. 159(C), pages 724-736.
    13. Abolfazl Heidari & Sadra Sahebzadeh & Zahra Dalvand, 2017. "Natural Ventilation in Vernacular Architecture of Sistan, Iran; Classification and CFD Study of Compound Rooms," Sustainability, MDPI, vol. 9(6), pages 1-19, June.
    14. Zeng, Cheng & Liu, Shuli & Shukla, Ashish, 2017. "A review on the air-to-air heat and mass exchanger technologies for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 753-774.
    15. Sakiyama, N.R.M. & Carlo, J.C. & Frick, J. & Garrecht, H., 2020. "Perspectives of naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Zhang, Haihua & Yang, Dong & Tam, Vivian W.Y. & Tao, Yao & Zhang, Guomin & Setunge, Sujeeva & Shi, Long, 2021. "A critical review of combined natural ventilation techniques in sustainable buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Tong, Zheming & Chen, Yujiao & Malkawi, Ali, 2017. "Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology," Applied Energy, Elsevier, vol. 193(C), pages 276-286.
    18. Su, Wei & Ai, Zhengtao & Liu, Jing & Yang, Bin & Wang, Faming, 2023. "Maintaining an acceptable indoor air quality of spaces by intentional natural ventilation or intermittent mechanical ventilation with minimum energy use," Applied Energy, Elsevier, vol. 348(C).
    19. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    20. Nayara Rodrigues Marques Sakiyama & Jurgen Frick & Timea Bejat & Harald Garrecht, 2021. "Using CFD to Evaluate Natural Ventilation through a 3D Parametric Modeling Approach," Energies, MDPI, vol. 14(8), pages 1-27, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16889-:d:1004976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.