IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p16104-d990919.html
   My bibliography  Save this article

Analysis of the Future Evolution of Biocapacity and Landscape Characteristics in the Agro-Pastoral Zone of Northern China

Author

Listed:
  • Xiaoyu Niu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    School of Geosciences, Yangtze University, Wuhan 430100, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yunfeng Hu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Lin Zhen

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Yiming Wang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    School of Geosciences, Yangtze University, Wuhan 430100, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Huimin Yan

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

The Agro-Pastoral Zone of Northern China (AZNC) is an ecologically fragile zone. It is a challenge to create scientifically sound plans for environmental conservation and agro-pastoral development due to the lack of future evolution prediction, and analysis of biocapacity (BC) and landscape characteristics. Using the Globeland30 dataset from 2000 to 2020, this study simulated 2030 land use/land cover (LULC) scenarios, and analyzed the future evolution of BC and landscape patterns. The results show that: (1) The Logistic and CA-Markov models can reasonably simulate the LULC changes in the research area, with ROC indices over 0.9 and Kappa approaching 0.805, after considering the driving factors such as physical geography, regional climate, and socio-economic development. (2) From 2000 to 2030, the spatial distribution pattern of LULC does not change significantly, and cultivated land, grassland, and forest are still the dominant land types in the research area. The regional BC exhibits an increasing trend (+4.55 × 10 6 gha/a), and the spatial distribution pattern of BC is similar to that of LULC. (3) Changes in land miniaturization, landscape fragmentation, and decreased aggregation can be seen in the entire AZNC and specific land categories, including cultivated land, grassland, and forest. The study provides suggestions for formulating the AZNC’s future ecological protection and agro-pastoral development strategies, and guidance for the LULC simulation in other agro-pastoral zones.

Suggested Citation

  • Xiaoyu Niu & Yunfeng Hu & Lin Zhen & Yiming Wang & Huimin Yan, 2022. "Analysis of the Future Evolution of Biocapacity and Landscape Characteristics in the Agro-Pastoral Zone of Northern China," IJERPH, MDPI, vol. 19(23), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16104-:d:990919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/16104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/16104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, MunkhDalai A. & Borjigin, Elles & Zhang, Huiping, 2007. "Mongolian nomadic culture and ecological culture: On the ecological reconstruction in the agro-pastoral mosaic zone in Northern China," Ecological Economics, Elsevier, vol. 62(1), pages 19-26, April.
    2. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Primi & Paolo Viola & Carlo Maria Rossi & Stefano Ripert & Maria Nicolina Ripa & Raffaello Spina & Bruno Ronchi, 2024. "Impacts of Changing Livestock Farming Practices on the Biocultural Heritage and Landscape Configuration of Italian Anti-Apennine," Land, MDPI, vol. 13(2), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qianning Zhang & Zhu Xu, 2021. "Fully Portraying Patch Area Scaling with Resolution: An Analytics and Descriptive Statistics-Combined Approach," Land, MDPI, vol. 10(3), pages 1-21, March.
    2. Hao Wang & Huimin Yan & Yunfeng Hu & Yue Xi & Yichen Yang, 2022. "Consistency and Accuracy of Four High-Resolution LULC Datasets—Indochina Peninsula Case Study," Land, MDPI, vol. 11(5), pages 1-19, May.
    3. Jingyi Wang & Chen Weng & Zhen Wang & Chunming Li & Tingting Wang, 2022. "What Constitutes the High-Quality Soundscape in Human Habitats? Utilizing a Random Forest Model to Explore Soundscape and Its Geospatial Factors Behind," IJERPH, MDPI, vol. 19(21), pages 1-23, October.
    4. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    5. Jiang, Lu & Xue, Bing & Xing, Ran & Chen, Xingpeng & Song, Lan & Wang, Yutao & Coffman, D’Maris & Mi, Zhifu, 2020. "Rural household energy consumption of farmers and herders in the Qinghai-Tibet Plateau," Energy, Elsevier, vol. 192(C).
    6. Gang Lin & Dong Jiang & Xiang Li & Jingying Fu, 2022. "Accounting for Carbon Sink and Its Dominant Influencing Factors in Chinese Ecological Space," Land, MDPI, vol. 11(10), pages 1-19, October.
    7. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    8. Xinwen Lin & Angathevar Baskaran & Yajie Zhang, 2023. "Watershed Horizontal Ecological Compensation Policy and Green Ecological City Development: Spatial and Mechanism Assessment," IJERPH, MDPI, vol. 20(3), pages 1-21, February.
    9. Mu Li & Lingli Zhang & Yuanyuan Chen & Shuangliang Liu & Mingyao Cai & Qiangqiang Sun, 2024. "Construction of Landscape Ecological Risk Collaborative Management Network in Mountainous Cities—A Case Study of Zhangjiakou," Land, MDPI, vol. 13(10), pages 1-28, September.
    10. Troy Sternberg, 2014. "Transboundary hazard risk: the Gobi desert paradigm," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 533-548, June.
    11. Yunchen Wang & Boyan Li, 2022. "The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    12. Zhang, Shaoyao & Deng, Wei & Zhang, Hao & Wang, Zhanyun, 2023. "Identification and analysis of transitional zone patterns along urban-rural-natural landscape gradients: An application to China’s southwest mountains," Land Use Policy, Elsevier, vol. 129(C).
    13. Bliss, Sam & Egler, Megan, 2020. "Ecological Economics Beyond Markets," Ecological Economics, Elsevier, vol. 178(C).
    14. Chaoqing Huang & Chao He & Qian Wu & MinhThu Nguyen & Song Hong, 2023. "Classification of the Land Cover of a Megacity in ASEAN Using Two Band Combinations and Three Machine Learning Algorithms: A Case Study in Ho Chi Minh City," Sustainability, MDPI, vol. 15(8), pages 1-27, April.
    15. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    16. Yintai Na & Jinxia Li & Buho Hoshino & Saixialt Bao & Fuying Qin & Purevtseren Myagmartseren, 2018. "Effects of Different Grazing Systems on Aboveground Biomass and Plant Species Dominance in Typical Chinese and Mongolian Steppes," Sustainability, MDPI, vol. 10(12), pages 1-14, December.
    17. Ziqian Kang & Shuo Wang & Ling Xu & Fenglin Yang & Shushen Zhang, 2021. "Suitability assessment of urban land use in Dalian, China using PNN and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 913-936, March.
    18. Myroslava Lesiv & Anatoly Shvidenko & Dmitry Schepaschenko & Linda See & Steffen Fritz, 2019. "A spatial assessment of the forest carbon budget for Ukraine," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 985-1006, August.
    19. Feng Zhang & Xiasong Hu & Jing Zhang & Chengyi Li & Yupeng Zhang & Xilai Li, 2022. "Change in Alpine Grassland NPP in Response to Climate Variation and Human Activities in the Yellow River Source Zone from 2000 to 2020," Sustainability, MDPI, vol. 14(14), pages 1-15, July.
    20. Lena Huldén & Ross McKitrick & Larry Huldén, 2014. "Average household size and the eradication of malaria," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 177(3), pages 725-742, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16104-:d:990919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.