IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12266-d926672.html
   My bibliography  Save this article

Spatial Analysis of Cultivated Land Productivity, Site Condition and Cultivated Land Health at County Scale

Author

Listed:
  • Fengqiang Wu

    (School of Environment and Resource, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
    Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Zizhou Avenue Road, Chengdu 610213, China)

  • Caijian Mo

    (School of Environment and Resource, Southwest University of Science and Technology, 59 Qinglong Road, Mianyang 621010, China
    Mianyang S&T City Division, National Remote Sensing Center of China, 125 Biyun Road, Mianyang 621002, China)

  • Xiaojun Dai

    (School of Civil Engineering and Geomatics, Southwest Petroleum University, 8 Xindu Road, Chengdu 610500, China)

  • Hongmei Li

    (Mianyang Natural Resources Bureau and Municipal Planning, No. 2, Yunquan South Street, Mianyang 621000, China)

Abstract

Cultivated land is a fundamental factor related to the social stability and sustainable development of the whole country. However, the safety of quantity and quality of cultivated land has decreased year by year, resulting in great challenges to the sustainable development of cultivated land. Cultivated land productivity, site conditions, and soil health jointly determine the sustainable development potential of cultivated land. Analyzing and calculating the coupling and cooperative relationship between these three subsystems can provide a theoretical and methodological reference for protecting and zoning cultivated land resources. Using Jiangyou City as a case study, this paper constructs a coupling coordination degree model of cultivated land productivity, site conditions, and soil health assessment systems in different geomorphic regions, and comprehensively analyzes the level of sustainable development of cultivated land in the study area. The results show that there are differences in the development potential of cultivated land resources in the mountainous regions in the north, the hilly regions in the center, and the plain regions in the south of Jiangyou City. The coupling coordination index of the three regions were calculated as 0.34, 0.51, and 0.63, respectively, for which the overall average coupling coordination index is 0.57; notably, it only reaches the “barely coordination” level. Based on our analysis results, the cultivated lands in Jiangyou City are classified into the following zones: core protection zone, dominant remediation zone, and key regulation zone. The cultivated land located in the core protection zone has a high coupling coordination index, which can be used as the preferred area for the delimitation of high standard basic farmland and permanent basic farmland. For the cultivated land located in the dominant remediation zone, the development of its subsystems is unbalanced. Comprehensive land improvement projects can be carried out in this zone to improve the overall quality. For the cultivated land located in the key regulation zone, it is recommended to implement projects such as returning farmland to forests to improve land use efficiency. In particular, the evaluation index system constructed in this paper is sufficiently representative, as it can support the classification, quality improvement, and sustainable use of cultivated land. Thus, other similar countries and regions can learn from the evaluation system constructed in this paper.

Suggested Citation

  • Fengqiang Wu & Caijian Mo & Xiaojun Dai & Hongmei Li, 2022. "Spatial Analysis of Cultivated Land Productivity, Site Condition and Cultivated Land Health at County Scale," IJERPH, MDPI, vol. 19(19), pages 1-20, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12266-:d:926672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12266/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12266/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hua Wang & Wuyan Li & Congmou Zhu & Xiaobo Tang, 2021. "Analysis of Heavy Metal Pollution in Cultivated Land of Different Quality Grades in Yangtze River Delta of China," IJERPH, MDPI, vol. 18(18), pages 1-17, September.
    2. Zhou, Yang & Li, Yamei & Xu, Chenchen, 2020. "Land consolidation and rural revitalization in China: Mechanisms and paths," Land Use Policy, Elsevier, vol. 91(C).
    3. Chong Zhao & Yong Zhou & Xigui Li & Pengnan Xiao & Jinhui Jiang, 2018. "Assessment of Cultivated Land Productivity and Its Spatial Differentiation in Dongting Lake Region: A Case Study of Yuanjiang City, Hunan Province," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    4. Xiaodan Wang & Zhengyu Yang, 2019. "Application of Fuzzy Optimization Model Based on Entropy Weight Method in Atmospheric Quality Evaluation: A Case Study of Zhejiang Province, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    5. Nan Wang & Jian Zu & Mu Li & Jinyi Zhang & Jinmin Hao, 2020. "Spatial Zoning of Cultivated Land in Shandong Province Based on the Trinity of Quantity, Quality and Ecology," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    6. Xiaoliang Li & Kening Wu & Rui Zhao & Yanan Liu & Xiao Li & Qijun Yang, 2021. "Spatial Analysis of Cultivated Land Productivity and Health Condition: A Case Study of Gaoping City, China," Land, MDPI, vol. 10(12), pages 1-19, November.
    7. Linlin Xiao & Xiaohuan Yang & Hongyan Cai & Dingxiang Zhang, 2015. "Cultivated Land Changes and Agricultural Potential Productivity in Mainland China," Sustainability, MDPI, vol. 7(9), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Zhou & Chunhui Wen, 2023. "Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development," Agriculture, MDPI, vol. 13(7), pages 1-47, July.
    2. Rong Zhao & Tianyu Jia & He Li, 2023. "Could the Sloping Land Conversion Program Promote Farmers’ Income in Rocky Desertification Areas?—Evidence from China," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    3. Xigui Li & Qing Wu & Yujie Liu, 2023. "Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xigui Li & Qing Wu & Yujie Liu, 2023. "Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China," IJERPH, MDPI, vol. 20(2), pages 1-28, January.
    2. Qian Sun & Mingjie Wu & Peiyu Du & Wei Qi & Xinyang Yu, 2022. "Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    3. Jiani Ma & Chao Zhang & Wenju Yun & Yahui Lv & Wanling Chen & Dehai Zhu, 2020. "The Temporal Analysis of Regional Cultivated Land Productivity with GPP Based on 2000–2018 MODIS Data," Sustainability, MDPI, vol. 12(1), pages 1-16, January.
    4. Rui Zhao & Kening Wu & Xiaoliang Li & Nan Gao & Mingming Yu, 2021. "Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    5. Shan Xu, 2018. "Temporal and Spatial Characteristics of the Change of Cultivated Land Resources in the Black Soil Region of Heilongjiang Province (China)," Sustainability, MDPI, vol. 11(1), pages 1-12, December.
    6. Fanqi Meng & Li Dong & Yu Zhang, 2023. "Spatiotemporal Dynamic Analysis and Simulation Prediction of Land Use and Landscape Patterns from the Perspective of Sustainable Development in Tourist Cities," Sustainability, MDPI, vol. 15(19), pages 1-21, October.
    7. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    8. Sheng Liu & Ming Bai & Min Yao & Ke Huang, 2021. "Identifying the natural and anthropogenic factors influencing the spatial disparity of population hollowing in traditional villages within a prefecture-level city," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-21, April.
    9. Zhang, Zuo & Li, Jiaming, 2022. "Spatial suitability and multi-scenarios for land use: Simulation and policy insights from the production-living-ecological perspective," Land Use Policy, Elsevier, vol. 119(C).
    10. Ying Lu & Walter Timo de Vries, 2023. "Spatio-Temporal Analysis of Rural Development in China over the Past 40 Years," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    11. Haicong Li & Lu Wang & Jianzhou Gong & A-Xing Zhu & Yueming Hu, 2021. "Land-Use Modes of the Dike–Pond System in the Pearl River Delta of China and Implications for Rural Revitalization," Land, MDPI, vol. 10(5), pages 1-20, April.
    12. Jing Zhang & Bingbing Huang & Xinming Chen & Congmou Zhu & Muye Gan, 2022. "Multidimensional Evaluation of the Quality of Rural Life Using Big Data from the Perspective of Common Prosperity," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
    13. Longjiao Wen & Zhenzhen Liu & Zhifeng Gao & Saeid Khanjari, 2022. "Evolutionary Path and Mechanism of Village Revitalization: A Case Study of Yuejin Village, Jiangsu, China," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    14. Xiuling Ding & Qian Lu & Lipeng Li & Apurbo Sarkar & Hua Li, 2023. "Does Labor Transfer Improve Farmers’ Willingness to Withdraw from Farming?—A Bivariate Probit Modeling Approach," Land, MDPI, vol. 12(8), pages 1-27, August.
    15. Jian, Yuqing & Liu, Zhengjia & Gong, Jianzhou, 2022. "Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management," Land Use Policy, Elsevier, vol. 122(C).
    16. Jianhui Dong & Wenju Yun & Kening Wu & Shaoshuai Li & Bingrui Liu & Qiaoyuan Lu, 2023. "Spatio-Temporal Analysis of Cultivated Land from 2010 to 2020 in Long’an County, Karst Region, China," Land, MDPI, vol. 12(2), pages 1-22, February.
    17. Chong Zhao & Yong Zhou & Xigui Li & Pengnan Xiao & Jinhui Jiang, 2018. "Assessment of Cultivated Land Productivity and Its Spatial Differentiation in Dongting Lake Region: A Case Study of Yuanjiang City, Hunan Province," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    18. Xiaoyun Li & Hongsheng Chen, 2021. "Two-Way Floating or Irreversible Floating? The Transition of Migrants from Urban Social Integration to Permanent Settlement in the Cities in China," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    19. Yin, Qiqi & Sui, Xueyan & Ye, Bei & Zhou, Yujie & Li, Chengqiang & Zou, Mengmeng & Zhou, Shenglu, 2022. "What role does land consolidation play in the multi-dimensional rural revitalization in China? A research synthesis," Land Use Policy, Elsevier, vol. 120(C).
    20. Wang, Tianyu & Wang, Zhenhua & Guo, Li & Zhang, Jinzhu & Li, Wenhao & He, Huaijie & Zong, Rui & Wang, Dongwang & Jia, Zhecheng & Wen, Yue, 2021. "Experiences and challenges of agricultural development in an artificial oasis: A review," Agricultural Systems, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12266-:d:926672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.