IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i16p10349-d892800.html
   My bibliography  Save this article

Analysis of Traffic Signs Information Volume Affecting Driver’s Visual Characteristics and Driving Safety

Author

Listed:
  • Lei Han

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Zhigang Du

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Shoushuo Wang

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

  • Ying Chen

    (School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China)

Abstract

To study the influence of traffic signs information volume (TSIV) on drivers’ visual characteristics and driving safety, the simulation scenarios of different levels of TSIV were established, and 30 participants were recruited for simulated driving tests. The eye tracker was used to collect eye movement data under three-speed conditions (60 km/h, 80 km/h, and 100 km/h) and different levels of TSIV (0 bits/km, 10 bits/km, 20 bits/km, 30 bits/km, 40 bits/km, and 50 bits/km). Principal component analysis (PCA) was used to select indicators sensitive to the influence of TSIV on the drivers’ visual behavior and to analyze the influence of TSIV on the drivers’ visual characteristics and visual workload intensity under different speed conditions. The results show that the fixation duration, saccade duration, and saccade amplitude are the three eye movement indicators that are most responsive to changes in the TSIV. The driver’s visual characteristics perform best at the S3 TSIV level (30 bits/km), with the lowest visual workload intensity, indicating that drivers have the lowest psychological stress and lower driving workload when driving under this TSIV condition. Therefore, a density of 30 bits/km is suggested for the TSIV, in order to ensure the security and comfort of the drivers. The theoretical underpinnings for placing and optimizing traffic signs will be provided by this work.

Suggested Citation

  • Lei Han & Zhigang Du & Shoushuo Wang & Ying Chen, 2022. "Analysis of Traffic Signs Information Volume Affecting Driver’s Visual Characteristics and Driving Safety," IJERPH, MDPI, vol. 19(16), pages 1-23, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10349-:d:892800
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/16/10349/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/16/10349/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kun Liu & Hongxing Deng, 2021. "The Relationship of the Information Quantity of Urban Roadside Traffic Signs and Drivers’ Visibility Based on Information Transmission," IJERPH, MDPI, vol. 18(20), pages 1-14, October.
    2. Nengchao Lyu & Lian Xie & Chaozhong Wu & Qiang Fu & Chao Deng, 2017. "Driver’s Cognitive Workload and Driving Performance under Traffic Sign Information Exposure in Complex Environments: A Case Study of the Highways in China," IJERPH, MDPI, vol. 14(2), pages 1-25, February.
    3. Yanli Ma & Shouming Qi & Yaping Zhang & Guan Lian & Weixin Lu & Ching-Yao Chan, 2020. "Drivers’ Visual Attention Characteristics under Different Cognitive Workloads: An On-Road Driving Behavior Study," IJERPH, MDPI, vol. 17(15), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lian Xie & Jiaxin Zhang & Rui Cheng, 2023. "Comprehensive Evaluation of Freeway Driving Risks Based on Fuzzy Logic," Sustainability, MDPI, vol. 15(1), pages 1-20, January.
    2. Qin Zeng & Yun Chen & Xiazhong Zheng & Shiyu He & Donghui Li & Benwu Nie, 2023. "Optimization of Underground Cavern Sign Group Layout Using Eye-Tracking Technology," Sustainability, MDPI, vol. 15(16), pages 1-32, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Baraa Abdulrahman Al-Mekhlafi & Ahmad Shahrul Nizam Isha & Nicholas Chileshe & Mohammed Abdulrab & Anwar Ameen Hezam Saeed & Ahmed Farouk Kineber, 2021. "Modelling the Relationship between the Nature of Work Factors and Driving Performance Mediating by Role of Fatigue," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
    2. Changxi Ma & Dong Yang & Jibiao Zhou & Zhongxiang Feng & Quan Yuan, 2019. "Risk Riding Behaviors of Urban E-Bikes: A Literature Review," IJERPH, MDPI, vol. 16(13), pages 1-18, June.
    3. Chen Xu & Decun Dong & Dongxiu Ou & Changxi Ma, 2019. "Time-of-Day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections," IJERPH, MDPI, vol. 16(5), pages 1-18, March.
    4. Qin Zeng & Yun Chen & Xiazhong Zheng & Shiyu He & Donghui Li & Benwu Nie, 2023. "Optimization of Underground Cavern Sign Group Layout Using Eye-Tracking Technology," Sustainability, MDPI, vol. 15(16), pages 1-32, August.
    5. Lian Xie & Jiaxin Zhang & Rui Cheng, 2023. "Comprehensive Evaluation of Freeway Driving Risks Based on Fuzzy Logic," Sustainability, MDPI, vol. 15(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:16:p:10349-:d:892800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.