IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p8089-d853704.html
   My bibliography  Save this article

Temporal and Spatial Variation Characteristics of Water Quality in the Middle and Lower Reaches of the Lijiang River, China and Their Responses to Environmental Factors

Author

Listed:
  • Dantong Zhu

    (State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
    School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
    South China Institution of Geotechnical Engineering, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China)

  • Xiangju Cheng

    (State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
    School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
    South China Institution of Geotechnical Engineering, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China)

  • Wuhua Li

    (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China)

  • Fujun Niu

    (State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China
    School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China
    South China Institution of Geotechnical Engineering, School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China)

  • Jianhui Wen

    (Guilin Environmental Monitoring Center, Guilin 541002, China)

Abstract

As the climate and the external environment have changed, the environmental factors of the Lijiang River Basin (LRB) have changed, posing new threats to the environmental quality, ecosystem balance, and management and protection of the water environment of the Lijiang River. Water quality indicators and environmental factors vary spatially along the Lijiang River, which runs through urban areas, farmland, and karst areas. However, research on the response of water quality to water environmental factors is still lacking. Within this context, this study considered statistical methods and hydrological, meteorological, and water quality data of the middle and lower reaches of the Lijiang River from 2012 to 2018, expounded on the temporal and spatial change characteristics and evolution trends of water quality indicators; we analyzed the correlation between water quality indicators and environmental factors; we quantitatively assessed the sensitivity and contribution rate of water quality indicators to environmental factors. The results demonstrated that rainfall feedback on the river streamflow was lagging, and upstream precipitation often affected downstream streamflow. The water quality in the upper reaches of Guilin has improved year by year, and pollution levels have increased slightly when flowing through the urban area of Guilin. In spite of this, it still falls within the range of self-purification. River characteristics heavily influence the impact of environmental factors on water quality indicators; in contrast, the effects of different locations along the same river are more similar. Four water quality indicators are negatively correlated with water temperature, pH, and dissolved oxygen (DO). The sensitivities of ammonia nitrogen (NH 4 -N) and chemical oxygen demand (COD Mn ) to streamflow increase with the flow direction. The contribution rates of DO-to-total phosphorus (TP) and pH-to-TP are over −6%. Water temperature is the major contributing factor in the Lijiang River, while DO has a higher contribution in tributaries. The external sources affect the concentration of various water quality indicators and the sensitivity of water quality indicators to the external environment. There should be a series of measures implemented to reduce pollution, such as using oxygenation or chemical means to increase pH in Dahe and Yangshuo to control water pollutants. Tourism and particular karst topography make LRB’s calculations unique, but the research method can be applied to other watersheds as well.

Suggested Citation

  • Dantong Zhu & Xiangju Cheng & Wuhua Li & Fujun Niu & Jianhui Wen, 2022. "Temporal and Spatial Variation Characteristics of Water Quality in the Middle and Lower Reaches of the Lijiang River, China and Their Responses to Environmental Factors," IJERPH, MDPI, vol. 19(13), pages 1-20, July.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:8089-:d:853704
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/8089/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/8089/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jun Li & Yuan Zhang & Qiming Qin & Yueguan Yan, 2017. "Investigating the Impact of Human Activity on Land Use/Cover Change in China’s Lijiang River Basin from the Perspective of Flow and Type of Population," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen-Yang Shou & Ye Tian & Bin Zhou & Xu-Jin Fu & Yun-Ji Zhu & Fu-Jun Yue, 2022. "The Effect of Rainfall on Aquatic Nitrogen and Phosphorus in a Semi-Humid Area Catchment, Northern China," IJERPH, MDPI, vol. 19(17), pages 1-14, September.
    2. Shulong Dong & Jiangming Ma & Yanhua Mo & Hao Yang, 2022. "GIS-Based Watershed Unit Forest Landscape Visual Quality Assessment in Yangshuo Section of Lijiang River Basin, China," Sustainability, MDPI, vol. 14(22), pages 1-28, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Na Liao & Xinchen Gu & Yuejian Wang & Hailiang Xu & Zili Fan, 2020. "Analyzing Macro-Level Ecological Change and Micro-Level Farmer Behavior in Manas River Basin, China," Land, MDPI, vol. 9(8), pages 1-17, July.
    2. Beygi Heidarlou, Hadi & Banj Shafiei, Abbas & Erfanian, Mahdi & Tayyebi, Amin & Alijanpour, Ahmad, 2019. "Effects of preservation policy on land use changes in Iranian Northern Zagros forests," Land Use Policy, Elsevier, vol. 81(C), pages 76-90.
    3. Rui Xiao & Xiaoyu Yu & Zhonghao Zhang & Xue Wang, 2021. "Built‐up land expansion simulation with combination of naive Bayes and cellular automaton model—A case study of the Shanghai‐Hangzhou Bay agglomeration," Growth and Change, Wiley Blackwell, vol. 52(3), pages 1804-1825, September.
    4. Ge Shi & Nan Jiang & Yang Li & Bin He, 2018. "Analysis of the Dynamic Urban Expansion Based on Multi-Sourced Data from 1998 to 2013: A Case Study of Jiangsu Province," Sustainability, MDPI, vol. 10(10), pages 1-18, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:8089-:d:853704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.