IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p7704-d846002.html
   My bibliography  Save this article

Modeling Motorcyclists’ Aggressive Driving Behavior Using Computational and Statistical Analysis of Real-Time Driving Data to Improve Road Safety and Reduce Accidents

Author

Listed:
  • Sarah Najm Abdulwahid

    (College of Graduate Studies, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Moamin A. Mahmoud

    (Institute of Informatics and Computing in Energy, Department of Computing, College of Computing and Informatics, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Nazrita Ibrahim

    (Institute of Informatics and Computing in Energy, Department of Computing, College of Computing and Informatics, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Bilal Bahaa Zaidan

    (Future Technology Research Center, National Yunlin University of Science and Technology, Douliu 64002, Taiwan)

  • Hussein Ali Ameen

    (Department of Computer Techniques Engineering, Al-Mustaqbal University College, Hillah 51001, Iraq)

Abstract

Driving behavior is considered one of the most important factors in all road crashes, accounting for 40% of all fatal and serious accidents. Moreover, aggressive driving is the leading cause of traffic accidents that jeopardize human life and property. By evaluating data collected by various collection devices, it is possible to detect dangerous and aggressive driving, which is a huge step toward altering the situation. The utilization of driving data, which has arisen as a new tool for assessing the style of driving, has lately moved the concentration of aggressive recognition research. The goal of this study is to detect dangerous and aggressive driving profiles utilizing data gathered from motorcyclists and smartphone APPs that run on the Android operating system. A two-stage method is used: first, determine driver profile thresholds (rules), then differentiate between non-aggressive and aggressive driving and show the harmful conduct for producing the needed outcome. The data were collected from motorcycles using -Speedometer GPS-, an application based on the Android system, supplemented with spatiotemporal information. After the completion of data collection, preprocessing of the raw data was conducted to make them ready for use. The next steps were extracting the relevant features and developing the classification model, which consists of the transformation of patterns into features that are considered a compressed representation. Lastly, this study discovered a collection of key characteristics which might be used to categorize driving behavior as aggressive, normal, or dangerous. The results also revealed major safety issues related to driving behavior while riding a motorcycle, providing valuable insight into improving road safety and reducing accidents.

Suggested Citation

  • Sarah Najm Abdulwahid & Moamin A. Mahmoud & Nazrita Ibrahim & Bilal Bahaa Zaidan & Hussein Ali Ameen, 2022. "Modeling Motorcyclists’ Aggressive Driving Behavior Using Computational and Statistical Analysis of Real-Time Driving Data to Improve Road Safety and Reduce Accidents," IJERPH, MDPI, vol. 19(13), pages 1-20, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7704-:d:846002
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/7704/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/7704/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarah Najm Abdulwahid & Moamin A. Mahmoud & Bilal Bahaa Zaidan & Abdullah Hussein Alamoodi & Salem Garfan & Mohammed Talal & Aws Alaa Zaidan, 2022. "A Comprehensive Review on the Behaviour of Motorcyclists: Motivations, Issues, Challenges, Substantial Analysis and Recommendations," IJERPH, MDPI, vol. 19(6), pages 1-38, March.
    2. Laura Eboli & Carmen Forciniti, 2020. "The Severity of Traffic Crashes in Italy: An Explorative Analysis among Different Driving Circumstances," Sustainability, MDPI, vol. 12(3), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuning Wang & Shuocheng Yang & Jinhao Li & Shaobing Xu & Jianqiang Wang, 2023. "An Emergency Driving Intervention System Designed for Driver Disability Scenarios Based on Emergency Risk Field," IJERPH, MDPI, vol. 20(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feifeng Jiang & Kwok Kit Richard Yuen & Eric Wai Ming Lee & Jun Ma, 2020. "Analysis of Run-Off-Road Accidents by Association Rule Mining and Geographic Information System Techniques on Imbalanced Datasets," Sustainability, MDPI, vol. 12(12), pages 1-32, June.
    2. Ying Cheng & Zhen Liu & Li Gao & Yanan Zhao & Tingting Gao, 2022. "Traffic Risk Environment Impact Analysis and Complexity Assessment of Autonomous Vehicles Based on the Potential Field Method," IJERPH, MDPI, vol. 19(16), pages 1-14, August.
    3. Jianyu Wang & Huapu Lu & Zhiyuan Sun & Tianshi Wang, 2020. "Exploring Factors Influencing Injury Severity of Vehicle At-Fault Accidents: A Comparative Analysis of Passenger and Freight Vehicles," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    4. Marija Ferko & Dario Babić & Darko Babić & Ali Pirdavani & Marko Ševrović & Marijan Jakovljević & Grgo Luburić, 2022. "Influence of Road Safety Barriers on the Severity of Motorcyclist Injuries in Horizontal Curves," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    5. Tasneem Miqdady & Juan de Oña, 2020. "Identifying the Factors That Increase the Probability of an Injury or Fatal Traffic Crash in an Urban Context in Jordan," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    6. Jiho Yeo & Shin-Hyoung Park, 2021. "Effect of Smartphone Dependency on Smartphone Use While Driving," Sustainability, MDPI, vol. 13(10), pages 1-13, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7704-:d:846002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.