IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p6082-d817290.html
   My bibliography  Save this article

Study on the Water Quality Characteristics of the Baoan Lake Basin in China under Different Land Use and Landscape Pattern Distributions

Author

Listed:
  • Weixiang Ren

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Xiaodong Wu

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Xuguang Ge

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Guiying Lin

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Lian Feng

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Wanqing Ma

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

  • Dan Xu

    (College of Urban and Environmental Sciences, Hubei Normal University, Huangshi 435002, China)

Abstract

Land use and landscape pattern highly affect water quality. Their relationship can assist in land-use management and improve land-use efficiency. In this study, a water quality survey of rivers and lakes was performed in 2020 to analyze the effects of land use and the landscape pattern on the water quality of the rivers and lakes in the Baoan Lake basin and is expected to provide a reference for land use planning. The results demonstrated that the effects of land use on water quality were generally higher during the dry season than during the wet season; however, the opposite was demonstrated for the landscape pattern index. Cropland and urban land were closely correlated with deteriorating water quality, with contributions to total nitrogen, total phosphorous, and ammonia nitrogen in the basin. The impact of the landscape pattern of the basin on water quality was controlled by the original land-use type. In addition, the landscape configuration formed different land-use types to produce different effects on water quality. The basin scale better explained the changes in water quality, especially for construction land, followed by the 250 m and 500 m scales in the buffer zone.

Suggested Citation

  • Weixiang Ren & Xiaodong Wu & Xuguang Ge & Guiying Lin & Lian Feng & Wanqing Ma & Dan Xu, 2022. "Study on the Water Quality Characteristics of the Baoan Lake Basin in China under Different Land Use and Landscape Pattern Distributions," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6082-:d:817290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/6082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/6082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rimal, Bhagawat & Sharma, Roshan & Kunwar, Ripu & Keshtkar, Hamidreza & Stork, Nigel E. & Rijal, Sushila & Rahman, Syed Ajijur & Baral, Himlal, 2019. "Effects of land use and land cover change on ecosystem services in the Koshi River Basin, Eastern Nepal," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingkai Leng & Xiaodong Wu & Xuguang Ge & Xiaoqing Yang & Zhi Huang & Haoran Liu & Jiali Zhu & Jinge Li & Mengting Gong & Zhepeng Sun & Zixiang Li, 2024. "Evaluation of Water Quality and Eutrophication of Typical Lakes in Southeast Hubei, China," Sustainability, MDPI, vol. 16(20), pages 1-19, October.
    2. Xuzhao Zhang & Hong Cai & Haomiao Tu, 2023. "Impact of Landscape Pattern on River Water Quality Based on Different Topographic Relief Areas: A Case Study of Chishui River Basin in Southwest China," Sustainability, MDPI, vol. 15(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yan & Wu, Tong & Song, Changsu & Hein, Lars & Shi, Faqi & Han, Mingchen & Ouyang, Zhiyun, 2022. "Influences of climate change and land use change on the interactions of ecosystem services in China’s Xijiang River Basin," Ecosystem Services, Elsevier, vol. 58(C).
    2. Xindong Du & Xiaoke Zhang & Huan Wang & Xiaojuan Zhi & Jianyuan Huang, 2020. "Assessing Green Space Potential Accessibility through Urban Artificial Building Data in Nanjing, China," Sustainability, MDPI, vol. 12(23), pages 1-11, November.
    3. Carlos Rosero & Xosé Otero & Cinthya Bravo & Catherine Frey, 2023. "Multitemporal Incidence of Landscape Fragmentation in a Protected Area of Central Andean Ecuador," Land, MDPI, vol. 12(2), pages 1-21, February.
    4. Dehuan Li & Wei Sun & Fan Xia & Yixuan Yang & Yujing Xie, 2021. "Can Habitat Quality Index Measured Using the InVEST Model Explain Variations in Bird Diversity in an Urban Area?," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    5. Cheng He & Kangning Xiong & Yongkuan Chi & Shuzhen Song & Jinzhong Fang & Shuyu He, 2022. "Effects of Landscape Type Change on Spatial and Temporal Evolution of Ecological Assets in a Karst Plateau-Mountain Area," IJERPH, MDPI, vol. 19(8), pages 1-17, April.
    6. Md. Omar Sarif & Rajan Dev Gupta, 2022. "Spatiotemporal mapping of Land Use/Land Cover dynamics using Remote Sensing and GIS approach: a case study of Prayagraj City, India (1988–2018)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 888-920, January.
    7. Hazem T. Abd El-Hamid & Hoda Nour-Eldin & Nazih Y. Rebouh & Ahmed M. El-Zeiny, 2022. "Past and Future Changes of Land Use/Land Cover and the Potential Impact on Ecosystem Services Value of Damietta Governorate, Egypt," Land, MDPI, vol. 11(12), pages 1-15, November.
    8. Muyi Huang & Qilong Wang & Qi Yin & Weihua Li & Guozhao Zhang & Qiaojun Ke & Qin Guo, 2023. "Analysis of Ecosystem Service Contribution and Identification of Trade-Off/Synergy Relationship for Ecosystem Regulation in the Dabie Mountains of Western Anhui Province, China," Land, MDPI, vol. 12(5), pages 1-22, May.
    9. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    10. Haizhen Chen & Yi Chen & Xiaosong Chen & Xingzhong Zhang & Haowei Wu & Zhihui Li, 2022. "Impacts of Historical Land Use Changes on Ecosystem Services in Guangdong Province, China," Land, MDPI, vol. 11(6), pages 1-18, May.
    11. Junhui Shi & Fang Wang, 2022. "The Effect of High-Speed Rail on Cropland Abandonment in China," Land, MDPI, vol. 11(7), pages 1-16, July.
    12. Yan, Jinming & Zhang, Dongsheng & Xia, Fangzhou, 2021. "Evaluation of village land use planning risks in green concepts: The case of Qiwangfen Village in Beijing," Land Use Policy, Elsevier, vol. 104(C).
    13. Zhenhua Chao & Zhanhuan Shang & Chengdong Fei & Ziyi Zhuang & Mengting Zhou, 2023. "Spatiotemporal Analysis of Urban Expansion in the Mountainous Hindu Kush Himalayas Region," Land, MDPI, vol. 12(3), pages 1-13, February.
    14. Qiongrui Zhang & Xuechao Sun & Kebin Zhang & Zhenni Liao & Songjun Xu, 2021. "Trade-Offs and Synergies of Ecosystem Services in the Pearl River Delta Urban Agglomeration," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    15. Wenbo Li & Dongyan Wang & Shuhan Liu & Yuanli Zhu & Zhuoran Yan, 2020. "Reclamation of Cultivated Land Reserves in Northeast China: Indigenous Ecological Insecurity Underlying National Food Security," IJERPH, MDPI, vol. 17(4), pages 1-16, February.
    16. Xu, Chang & Lin, Fanli & Li, Chaozhu & Cheng, Baodong, 2022. "Effects of designating non-public forests for ecological purposes on farmer's forestland investment: A quasi-experiment in southern China," Forest Policy and Economics, Elsevier, vol. 143(C).
    17. Isabelle D. Wolf & Parvaneh Sobhani & Hassan Esmaeilzadeh, 2023. "Assessing Changes in Land Use/Land Cover and Ecological Risk to Conserve Protected Areas in Urban–Rural Contexts," Land, MDPI, vol. 12(1), pages 1-22, January.
    18. Shiksha Bastola & Sanghyup Lee & Yongchul Shin & Younghun Jung, 2020. "An Assessment of Environmental Impacts on the Ecosystem Services: Study on the Bagmati Basin of Nepal," Sustainability, MDPI, vol. 12(19), pages 1-22, October.
    19. Siqi Liu & Guanqi Huang & Yulu Wei & Zhi Qu, 2022. "Monitoring and Assessing Land Use/Cover Change and Ecosystem Service Value Using Multi-Resolution Remote Sensing Data at Urban Ecological Zone," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    20. Pham, Kien T. & Lin, Tang-Huang, 2023. "Effects of urbanisation on ecosystem service values: A case study of Nha Trang, Vietnam," Land Use Policy, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6082-:d:817290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.