IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p5984-d815798.html
   My bibliography  Save this article

Carbon Emissions of the Tourism Telecoupling System: Theoretical Framework, Model Specification and Synthesis Effects

Author

Listed:
  • Xiaofang Duan

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Jinhe Zhang

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China
    Huangshan Park Ecosystem Observation and Research Station, Ministry of Education, Huangshan 245000, China)

  • Ping Sun

    (School of Management, Shandong University, Jinan 250100, China)

  • Honglei Zhang

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Chang Wang

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Ya-Yen Sun

    (School of Business, The University of Queensland, Brisbane 4072, Australia)

  • Manfred Lenzen

    (School of Physics, The University of Sydney, Sydney 2006, Australia)

  • Arunima Malik

    (School of Physics, The University of Sydney, Sydney 2006, Australia)

  • Shanshan Cao

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

  • Yue Kan

    (School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China)

Abstract

The flows of people and material attributed to international tourism exert a major impact on the global environment. Tourism carbon emissions is the main indicator in this context. However, previous studies focused on estimating the emissions of destinations, ignoring the embodied emissions in tourists’ origins and other areas. This study provides a comprehensive framework of a tourism telecoupling system. Taking China’s international tourism as an example, we estimate the carbon emissions of its tourism telecoupling system based on the Tourism Satellite Account and input–output model. We find that (1) the proposal of a tourism telecoupling system provides a new perspective for analyzing the carbon emissions of a tourism system. The sending system (origins) and indirect spillover system (resource suppliers) have been ignored in previous studies. (2) In the telecoupling system of China’s international tourism, the emission reduction effect of the sending system is significant. (3) The direct spillover system (transit) and indirect spillover system’s spatial transfer effects of environment responsibility are remarkable. (4) There is a large carbon trade implied in international tourism. This study makes us pay attention to the carbon emissions of tourists’ origins and the implied carbon trading in tourism flows.

Suggested Citation

  • Xiaofang Duan & Jinhe Zhang & Ping Sun & Honglei Zhang & Chang Wang & Ya-Yen Sun & Manfred Lenzen & Arunima Malik & Shanshan Cao & Yue Kan, 2022. "Carbon Emissions of the Tourism Telecoupling System: Theoretical Framework, Model Specification and Synthesis Effects," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:5984-:d:815798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/5984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/5984/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jillian M. Deines & Xiao Liu & Jianguo Liu, 2016. "Telecoupling in urban water systems: an examination of Beijing’s imported water supply," Water International, Taylor & Francis Journals, vol. 41(2), pages 251-270, March.
    2. Qiao Chen & Yan Mao & Alastair M. Morrison, 2021. "Impacts of Environmental Regulations on Tourism Carbon Emissions," IJERPH, MDPI, vol. 18(23), pages 1-16, December.
    3. Dandan Liu & Dewei Yang & Anmin Huang, 2021. "LEAP-Based Greenhouse Gases Emissions Peak and Low Carbon Pathways in China’s Tourist Industry," IJERPH, MDPI, vol. 18(3), pages 1-15, January.
    4. Muhammad Khalid Anser & Zahid Yousaf & Usama Awan & Abdelmohsen A. Nassani & Muhammad Moinuddin Qazi Abro & Khalid Zaman, 2020. "Identifying the Carbon Emissions Damage to International Tourism: Turn a Blind Eye," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    5. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 522-528, June.
    6. Chunyu Pan & Anil Kumar Shrestha & Guangyu Wang & John L. Innes & Kevin Xinwei Wang & Nuyun Li & Jinliang Li & Yeyun He & Chunguang Sheng & John-O. Niles, 2021. "A Linkage Framework for the China National Emission Trading System (CETS): Insight from Key Global Carbon Markets," Sustainability, MDPI, vol. 13(13), pages 1-15, July.
    7. Chung, Min Gon & Dietz, Thomas & Liu, Jianguo, 2018. "Global relationships between biodiversity and nature-based tourism in protected areas," Ecosystem Services, Elsevier, vol. 34(PA), pages 11-23.
    8. Zhang Chenghu & Muhammad Arif & Khurram Shehzad & Mahmood Ahmad & Judit Oláh, 2021. "Modeling the Dynamic Linkage between Tourism Development, Technological Innovation, Urbanization and Environmental Quality: Provincial Data Analysis of China," IJERPH, MDPI, vol. 18(16), pages 1-21, August.
    9. Bruckner, Martin & Fischer, Günther & Tramberend, Sylvia & Giljum, Stefan, 2015. "Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods," Ecological Economics, Elsevier, vol. 114(C), pages 11-21.
    10. Yue Pan & Gangmin Weng & Conghui Li & Jianpu Li, 2021. "Coupling Coordination and Influencing Factors among Tourism Carbon Emission, Tourism Economic and Tourism Innovation," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    11. Sun, Ya-Yen, 2014. "A framework to account for the tourism carbon footprint at island destinations," Tourism Management, Elsevier, vol. 45(C), pages 16-27.
    12. Dan Nie & Yanbin Li & Xiyu Li, 2021. "Dynamic Spillovers and Asymmetric Spillover Effect between the Carbon Emission Trading Market, Fossil Energy Market, and New Energy Stock Market in China," Energies, MDPI, vol. 14(19), pages 1-22, October.
    13. Manfred Lenzen & Ya-Yen Sun & Futu Faturay & Yuan-Peng Ting & Arne Geschke & Arunima Malik, 2018. "Author Correction: The carbon footprint of global tourism," Nature Climate Change, Nature, vol. 8(6), pages 544-544, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lameru Kacaw & Bor-Wen Tsai, 2023. "The Application of PPGIS to Telecoupling Research: A Case Study of the Agricultural Landscape Transformation in an Indigenous Village in Taiwan," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    2. Gengxia Yang & Liang Jia, 2022. "Estimation of Carbon Emissions from Tourism Transport and Analysis of Its Influencing Factors in Dunhuang," Sustainability, MDPI, vol. 14(21), pages 1-11, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Xia & Suocheng Dong & Zehong Li & Minyan Zhao & Dongqi Sun & Wenbiao Zhang & Yu Li, 2022. "Eco-Efficiency and Its Drivers in Tourism Sectors with Respect to Carbon Emissions from the Supply Chain: An Integrated EEIO and DEA Approach," IJERPH, MDPI, vol. 19(11), pages 1-26, June.
    2. Duoxun Ba & Jing Zhang & Suocheng Dong & Bing Xia & Lin Mu, 2022. "Spatial-Temporal Characteristics and Driving Factors of the Eco-Efficiency of Tourist Hotels in China," IJERPH, MDPI, vol. 19(18), pages 1-24, September.
    3. Sudeshna Ghosh, 2022. "Effects of tourism on carbon dioxide emissions, a panel causality analysis with new data sets," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3884-3906, March.
    4. Fangming Qin & Jingyan Liu & Gang Li, 2024. "Accounting for tourism carbon emissions: A consumption stripping perspective based on the tourism satellite account," Tourism Economics, , vol. 30(3), pages 633-654, May.
    5. Chaogao An & Polat Muhtar & Zhenquan Xiao, 2022. "Spatiotemporal Evolution of Tourism Eco-Efficiency in Major Tourist Cities in China," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    6. Asif Razzaq & Arshian Sharif & Paiman Ahmad & Kittisak Jermsittiparsert, 2021. "Asymmetric role of tourism development and technology innovation on carbon dioxide emission reduction in the Chinese economy: Fresh insights from QARDL approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(1), pages 176-193, January.
    7. Yuxiang Yan & Chayanon Phucharoen, 2024. "Tourism Transport-Related CO 2 Emissions and Economic Growth: A Deeper Perspective from Decomposing Driving Effects," Sustainability, MDPI, vol. 16(8), pages 1-16, April.
    8. Fredrick Oteng Agyeman & Ma Zhiqiang & Mingxing Li & Agyemang Kwasi Sampene & Malcom Frimpong Dapaah & Emmanuel Adu Gyamfi Kedjanyi & Paul Buabeng & Yiyao Li & Saifullah Hakro & Mohammad Heydari, 2022. "Probing the Effect of Governance of Tourism Development, Economic Growth, and Foreign Direct Investment on Carbon Dioxide Emissions in Africa: The African Experience," Energies, MDPI, vol. 15(13), pages 1-24, June.
    9. Scott, Daniel & Gössling, Stefan, 2022. "A review of research into tourism and climate change - Launching the annals of tourism research curated collection on tourism and climate change," Annals of Tourism Research, Elsevier, vol. 95(C).
    10. Osorio, Pilar & Cadarso, María-Ángeles & Tobarra, María-Ángeles & García-Alaminos, Ángela, 2023. "Carbon footprint of tourism in Spain: Covid-19 impact and a look forward to recovery," Structural Change and Economic Dynamics, Elsevier, vol. 65(C), pages 303-318.
    11. He, Jianjian & Yang, Yi & Liao, Zhongju & Xu, Anqi & Fang, Kai, 2022. "Linking SDG 7 to assess the renewable energy footprint of nations by 2030," Applied Energy, Elsevier, vol. 317(C).
    12. Xiaopeng Si & Zi Tang, 2024. "Assessment of low-carbon tourism development from multi-aspect analysis: A case study of the Yellow River Basin, China," Papers 2402.11579, arXiv.org.
    13. Run Liu & Ziyue Qiu, 2022. "Urban Sustainable Development Empowered by Cultural and Tourism Industries: Using Zhenjiang as an Example," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    14. Chlupsa, Christian & Dietert, Tilko & Flori, Heiko & Herbrand, Marc & Istok, Ferdinand & Kocagöz, Orhan & Kraus, Hans & Ladnar, Nadine & Mendler, Josef & Mörtl, Timo & Ranig, Ragna & Rühl, Alexander &, 2023. "Nachhaltige Mobilität der Zukunft," KCFM Schriftenreihe, FOM Hochschule für Oekonomie & Management, KCFM KompetenzCentrum für Future Mobility, volume 1, number 1 edited by FOM Hochschule für Oekonomie & Management, KCFM KompetenzCentrum für Future Mobility.
    15. Talwar, Shalini & Kaur, Puneet & Escobar, Octavio & Lan, Sai, 2022. "Virtual reality tourism to satisfy wanderlust without wandering: An unconventional innovation to promote sustainability," Journal of Business Research, Elsevier, vol. 152(C), pages 128-143.
    16. Natalia Porto & Matías Ciaschi, 2021. "Reformulating the tourism-extended environmental Kuznets curve: A quantile regression analysis under environmental legal conditions," Tourism Economics, , vol. 27(5), pages 991-1014, August.
    17. Pipatpong Fakfare & Walanchalee Wattanacharoensil, 2023. "Low‐carbon tourism for island destinations: A crucial alternative for sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(1), pages 180-197, February.
    18. Min Gon Chung & Tao Pan & Xintong Zou & Jianguo Liu, 2018. "Complex Interrelationships between Ecosystem Services Supply and Tourism Demand: General Framework and Evidence from the Origin of Three Asian Rivers," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    19. Nicholas Apergis & Konstantinos Gavriilidis & Rangan Gupta, 2023. "Does climate policy uncertainty affect tourism demand? Evidence from time-varying causality tests," Tourism Economics, , vol. 29(6), pages 1484-1498, September.
    20. Ti-An Chen, 2022. "Business Performance Evaluation for Tourism Factory: Using DEA Approach and Delphi Method," Sustainability, MDPI, vol. 14(15), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:5984-:d:815798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.