IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i2p832-d483159.html
   My bibliography  Save this article

Changes in the Impacts of Topographic Factors, Soil Texture, and Cropping Systems on Topsoil Chemical Properties in the Mountainous Areas of the Subtropical Monsoon Region from 2007 to 2017: A Case Study in Hefeng, China

Author

Listed:
  • Qing Li

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Fenlan Gu

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Yong Zhou

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Tao Xu

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Li Wang

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Qian Zuo

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Liang Xiao

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Jingyi Liu

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Yang Tian

    (The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

Abstract

Understanding the spatial pattern of soil chemical properties (SCPs) together with topological factors and soil management practices is essential for land management. This study examines the spatial changes in soil chemical properties and their impact on China’s subtropical mountainous areas. In 2007 and 2017, 290 and 200 soil samples, respectively, were collected in Hefeng County, a mountainous county in central China. We used descriptive statistics and geostatistical methods, including ANOVA, semivariance, Moran’s I, and fractal dimensions, to analyze the characteristics and spatial autocorrelation changes in soil organic matter (OM), available phosphorus (AP), available potassium (AK), and pH value from 2007 to 2017. We explored the relationship between each SCP and the relationship between SCPs with topographic parameters, soil texture, and cropping systems. The results show that the mean value of soil OM, AP, AK, and pH in Hefeng increased from 2007 to 2017. The spatial variation and spatial dependency of each SCP in 2007, excluding AP and AK in 2007, were higher than in 2017. The soil in areas with high topographic relief, profile curvature, and planform curvature had less AP, AK, and pH. Soil at higher elevation had lower OM (r = −0.197, p < 0.01; r = −0.334, p < 0.01) and AP (r = −0.043, p < 0.05; r = −0.121, p < 0.05) and higher AK (r = −0.305, p < 0.01; r = 0.408, p < 0.01) in 2007 and 2017. Soil OM and AK in 2007 were significantly ( p < 0.05) correlated with soil texture ( p < 0.05). In contrast, oil AP and soil pH in 2007 and all SCPs in 2017 were poorly correlated with soil texture. The cropping systems played an important role in affecting all SCPs in 2007 ( p < 0.01), while they only significantly affected AK in 2017 ( p < 0.05). Our findings demonstrate that both topological factors, that is, the changes in cropping management and the changes in acid rain, impact soil chemical properties. The local government should place more focus on reducing soil acid amounts, soil AP content, and soil erosion by improving water conservancy facilities.

Suggested Citation

  • Qing Li & Fenlan Gu & Yong Zhou & Tao Xu & Li Wang & Qian Zuo & Liang Xiao & Jingyi Liu & Yang Tian, 2021. "Changes in the Impacts of Topographic Factors, Soil Texture, and Cropping Systems on Topsoil Chemical Properties in the Mountainous Areas of the Subtropical Monsoon Region from 2007 to 2017: A Case St," IJERPH, MDPI, vol. 18(2), pages 1-22, January.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:832-:d:483159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/2/832/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/2/832/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Beibei & Wu, Qiaoran & Wang, Feng & Zhang, Bing, 2019. "Is straw return-to-field always beneficial? Evidence from an integrated cost-benefit analysis," Energy, Elsevier, vol. 171(C), pages 393-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinhua Xie & Gangqiao Yang & Ge Wang & Shuoyan He, 2024. "How does social capital affect farmers’ environment-friendly technology adoption behavior? A case study in Hubei Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 18361-18384, July.
    2. Jutao Zeng & Jie Lyu, 2023. "Simultaneous Decisions to Undertake Off-Farm Work and Straw Return: The Role of Cognitive Ability," Land, MDPI, vol. 12(8), pages 1-21, August.
    3. Hongbin Liu & Mengyao Wu & Xinhua Liu & Jiaju Gao & Xiaojuan Luo & Yan Wu, 2021. "Simulation of Policy Tools’ Effects on Farmers’ Adoption of Conservation Tillage Technology: An Empirical Analysis in China," Land, MDPI, vol. 10(10), pages 1-23, October.
    4. Fang, Yan Ru & Hossain, MD Shouquat & Peng, Shuan & Han, Ling & Yang, Pingjian, 2024. "Sustainable energy development of crop straw in five southern provinces of China: Bioenergy production, land, and water saving potential," Renewable Energy, Elsevier, vol. 224(C).
    5. Wang, Anbang & He, Ke & Zhang, Junbiao & Zeng, Yangmei, 2021. "Green Production Technologies and Technical Efficiency of Rice Farmers in China: A Case Study of Straw-Derived Biochar," 2021 Conference, August 17-31, 2021, Virtual 315026, International Association of Agricultural Economists.
    6. Tao Xu & Siqi Yi & Yong Zhou & Qing Li & Yizhu Liu, 2022. "Temporal and Spatial Changes and Driving Forces of Soil Properties in Subtropical Mountainous Areas from 2017 to 2020: A Case Study of Baokang County, Hubei Province, China," Land, MDPI, vol. 11(10), pages 1-22, October.
    7. Yong Luo & Dianpeng Chen & Xiaoguo Wang, 2023. "Assessment of Crop Residues and Corresponding Nutrients Return to Fields via Root, Stubble, and Straw in Southwest China," Sustainability, MDPI, vol. 15(20), pages 1-13, October.
    8. Xingchen Huang & Hong Wang & Yuning Zou & Cece Qiao & Bing Hao & Qingqin Shao & Wenge Wu & Hua Wu & Jianrong Zhao & Lantian Ren, 2023. "Rice Straw Composting Improves the Microbial Diversity of Paddy Soils to Stimulate the Growth, Yield, and Grain Quality of Rice," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    9. Mao, Hui & Quan, Yurong & Fu, Yong & Chen, Shaojian, 2022. "Risk preferences, productive investment and straw return technology adoption by farmers in China," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322087, Agricultural and Applied Economics Association.
    10. Qiao Li & Songjian Liu & Shangzhi Gao & Xin Zhou & Riyue Liu & Song Guan & Sen Dou, 2021. "Specified Dosages of Biochar Application Not Impact Native Organic Carbon but Promote a Positive Effect on Native Humic Acid in Humicryepts Soil," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    11. Lening Hu & Shuangli Li & Ke Li & Haiyan Huang & Wenxin Wan & Qiuhua Huang & Qiuyan Li & Yafen Li & Hua Deng & Tieguang He, 2020. "Effects of Two Types of Straw Biochar on the Mineralization of Soil Organic Carbon in Farmland," Sustainability, MDPI, vol. 12(24), pages 1-18, December.
    12. Yixi Xue & Yi Zhang & Yi Chen, 2019. "An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
    13. Yi Yang & Beibei Liu & Peng Wang & Wei‐Qiang Chen & Timothy M. Smith, 2020. "Toward sustainable climate change adaptation," Journal of Industrial Ecology, Yale University, vol. 24(2), pages 318-330, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:2:p:832-:d:483159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.