IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9751-d636857.html
   My bibliography  Save this article

Study on Ecosystem Service Value (ESV) Spatial Transfer in the Central Plains Urban Agglomeration in the Yellow River Basin, China

Author

Listed:
  • Min Liu

    (College of Resource and Environment, Henan University of Economics and Law, Zhengzhou 450046, China
    Academician Laboratory for Urban and Rural Spatial Data Mining of Henan Province, Henan University of Economics and Law, Zhengzhou 450046, China
    Research Center for Coordinated Economic Development of the Yellow River Basin, Henan University of Economics and Law, Zhengzhou 450046, China)

  • Jianpeng Fan

    (College of Business Administration, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China)

  • Yating Wang

    (Chengdu Academy of Environmental Sciences, Chengdu 610000, China)

  • Chanjuan Hu

    (Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China)

Abstract

Urban agglomeration is the key area to realizing regional sustainable development. Timely and accurate assessment of its ESV spatial transfer can provide a scientific basis for intercity environmental cooperation to solve transboundary environmental problems. The ESV and its spatial transfer characteristics in the Central Plains Urban Agglomeration in 2000 and 2018 were quantified by introducing the breaking point model. The findings were as follows: Firstly, taking the central city of Zhengzhou as the transferred-in area, ESV spatial transfer distributions and changes presented a trend of hinterland > metropolitan area. Secondly, the ESV spatial transfer intensity from the metropolitan area to the central city presented an increase trend, with an increase of RMB 498,400–1,053,000/km 2 , and the ESV spatial transfer intensity from the hinterland to the central city presented a decrease trend, with a decrease of RMB 15,200–814,000/km 2 in contrast. Thirdly, a total of RMB 294.763–331.471 billion worth of ESV has been transferred, and only that worth RMB 0.534–1.716 billion reached the central city, accounting for 0.181–0.518% of the total ESV transferred and 2.760–17.482% of the central city’s ESV. Fourthly, the ESV spatial transfer radius of each city was 25.47–214.17 km, but the ESV spatial transfer range of a few cities could reach the central city. Lastly, there was inefficiency in the ESV spatial transfer only in the natural driving spatial transfer pattern due to the spatial heterogeneity of ESV distribution, and there was potential for strengthening the ecological interactions based on space guidance provided by ESV spatial transfer.

Suggested Citation

  • Min Liu & Jianpeng Fan & Yating Wang & Chanjuan Hu, 2021. "Study on Ecosystem Service Value (ESV) Spatial Transfer in the Central Plains Urban Agglomeration in the Yellow River Basin, China," IJERPH, MDPI, vol. 18(18), pages 1-27, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9751-:d:636857
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9751/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9751/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Groot, Rudolf S. & Wilson, Matthew A. & Boumans, Roelof M. J., 2002. "A typology for the classification, description and valuation of ecosystem functions, goods and services," Ecological Economics, Elsevier, vol. 41(3), pages 393-408, June.
    2. Schröter, Matthias & Koellner, Thomas & Alkemade, Rob & Arnhold, Sebastian & Bagstad, Kenneth J. & Erb, Karl-Heinz & Frank, Karin & Kastner, Thomas & Kissinger, Meidad & Liu, Jianguo & López-Hoffman, , 2018. "Interregional flows of ecosystem services: Concepts, typology and four cases," Ecosystem Services, Elsevier, vol. 31(PB), pages 231-241.
    3. Wenbo Cai & Tong Wu & Wei Jiang & Wanting Peng & Yongli Cai, 2020. "Integrating Ecosystem Services Supply–Demand and Spatial Relationships for Intercity Cooperation: A Case Study of the Yangtze River Delta," Sustainability, MDPI, vol. 12(10), pages 1-24, May.
    4. Chao Ye & Zhaojing Liu & Wenbo Cai & Ruishan Chen & Liangliang Liu & Yongli Cai, 2019. "Spatial Production and Governance of Urban Agglomeration in China 2000–2015: Yangtze River Delta as a Case," Sustainability, MDPI, vol. 11(5), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wan-Jiun Chen & Jihn-Fa Jan & Chih-Hsin Chung & Shyue-Cherng Liaw, 2022. "Resident Willingness to Pay for Ecosystem Services in Hillside Forests," IJERPH, MDPI, vol. 19(10), pages 1-17, May.
    2. Jing Zhuge & Jie Zeng & Wanxu Chen & Chi Zhang, 2023. "Impacts of Land-Use Change on Ecosystem Services Value in the South-to-North Water Diversion Project, China," IJERPH, MDPI, vol. 20(6), pages 1-20, March.
    3. Wenxin Zheng & Jian Zhang, 2023. "Study on the Spatial and Temporal Evolution of Ecosystem Service Values and Driving Mechanism in the Yan River Basin from 1990 to 2020," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    4. Min Liu & Jianpeng Fan & Yuanzheng Li & Qizheng Mao, 2023. "Ecosystem Service Optimisation in the Central Plains Urban Agglomeration Based on Land Use Structure Adjustment," Land, MDPI, vol. 12(7), pages 1-27, July.
    5. Min Liu & Jianpeng Fan & Yuanzheng Li & Linan Sun, 2022. "Simulating the Spatial Mismatch between Ecosystem Services’ (ESs’) Supply and Demand Based on Their Spatial Transfer in Urban Agglomeration Area, China," Land, MDPI, vol. 11(8), pages 1-19, July.
    6. Lin Ji & Yuanjing Qi & Qun’ou Jiang & Chunhong Zhao, 2024. "Spatial–Temporal Variations of the Gross Ecosystem Product under the Influence of the Spatial Spillover Effect of Urbanization and Ecological Construction in the Yangtze River Delta Region of China," Land, MDPI, vol. 13(6), pages 1-21, May.
    7. Ruijie Zhang & Kanhua Yu & Pingping Luo, 2024. "Spatio-Temporal Relationship between Land Use Carbon Emissions and Ecosystem Service Value in Guanzhong, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    8. Jizhe Zhou & Yanhong Jiang & Shaolin Niu & Lan Li & Weijia Li & Yahui Zhang & Dongyang Liu, 2023. "Spatial Optimization of Rural Settlements in a Small Watershed Based on Social Network Analysis," Networks and Spatial Economics, Springer, vol. 23(3), pages 799-823, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bochuan Zhao & Yongfu Li & Yazhu Wang & Guoqing Zhi, 2022. "Research on Expansion Characteristics of Aquaculture Ponds and Variations in Ecosystem Service Value from the Perspective of Protecting Cultivated Lands: A Case Study of Liyang City, China," IJERPH, MDPI, vol. 19(14), pages 1-14, July.
    2. Uta Schirpke & Lukas Egarter Vigl & Erich Tasser & Ulrike Tappeiner, 2019. "Analyzing Spatial Congruencies and Mismatches between Supply, Demand and Flow of Ecosystem Services and Sustainable Development," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    3. Finisdore, John & Rhodes, Charles & Haines-Young, Roy & Maynard, Simone & Wielgus, Jeffrey & Dvarskas, Anthony & Houdet, Joel & Quétier, Fabien & Lamothe, Karl A. & Ding, Helen & Soulard, François & V, 2020. "The 18 benefits of using ecosystem services classification systems," Ecosystem Services, Elsevier, vol. 45(C).
    4. Thomas Elliot & Javier Babí Almenar & Samuel Niza & Vânia Proença & Benedetto Rugani, 2019. "Pathways to Modelling Ecosystem Services within an Urban Metabolism Framework," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    5. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.
    6. Stefan Liehr & Julia Röhrig & Marion Mehring & Thomas Kluge, 2017. "How the Social-Ecological Systems Concept Can Guide Transdisciplinary Research and Implementation: Addressing Water Challenges in Central Northern Namibia," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    7. Merica Slišković & Katja Božić & Jelena Žanić Mikuličić & Ines Kolanović, 2024. "Addressing the Significance of the Union List with a Focus on Marine Invasive Alien Species Impacts," Sustainability, MDPI, vol. 16(21), pages 1-25, October.
    8. Yanzi Wang & Chunming Wu & Yongfeng Gong & Zhen Zhu, 2021. "Can Adaptive Governance Promote Coupling Social-Ecological Systems? Evidence from the Vulnerable Ecological Region of Northwestern China," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    9. Breffle, William S. & Muralidharan, Daya & Donovan, Richard P. & Liu, Fangming & Mukherjee, Amlan & Jin, Yongliang, 2013. "Socioeconomic evaluation of the impact of natural resource stressors on human-use services in the Great Lakes environment: A Lake Michigan case study," Resources Policy, Elsevier, vol. 38(2), pages 152-161.
    10. Comino, E. & Ferretti, V., 2016. "Indicators-based spatial SWOT analysis: supporting the strategic planning and management of complex territorial systems," LSE Research Online Documents on Economics 64142, London School of Economics and Political Science, LSE Library.
    11. Yajing Shao & Xuefeng Yuan & Chaoqun Ma & Ruifang Ma & Zhaoxia Ren, 2020. "Quantifying the Spatial Association between Land Use Change and Ecosystem Services Value: A Case Study in Xi’an, China," Sustainability, MDPI, vol. 12(11), pages 1-20, May.
    12. Samira F. Oliveira & Rachel B. Prado & Elaine C. C. Fidalgo & Ana P. D. Turetta & Joyce M. G. Monteiro & Bernadete da C. C. G. Pedreira & Gerson J. Y. Antonio & Renato L. de Assis & Sandro R. A. Oitav, 2024. "Climate Change and Ecosystem Services: A Participatory Approach in a Brazilian Mountainous Region," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 17(5), pages 1-1, September.
    13. Jansson, Åsa, 2013. "Reaching for a sustainable, resilient urban future using the lens of ecosystem services," Ecological Economics, Elsevier, vol. 86(C), pages 285-291.
    14. P. Hlaváčková & D. Šafařík, 2016. "Quantification of the utility value of the recreational function of forests from the aspect of valuation practice," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 62(8), pages 345-356.
    15. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    16. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    17. Hackbart, Vivian C.S. & de Lima, Guilherme T.N.P. & dos Santos, Rozely F., 2017. "Theory and practice of water ecosystem services valuation: Where are we going?," Ecosystem Services, Elsevier, vol. 23(C), pages 218-227.
    18. Meixler, Marcia S., 2017. "Assessment of Hurricane Sandy damage and resulting loss in ecosystem services in a coastal-urban setting," Ecosystem Services, Elsevier, vol. 24(C), pages 28-46.
    19. Juliana Hurtado Rassi, 2020. "Gestión conjunta de ecosistemas transfronterizos: la importancia del trabajo articulado entre los Estados para la conservación de los recursos naturales. Análisis del caso particular de la “Reserva de," Books, Universidad Externado de Colombia, Facultad de Derecho, number 1241.
    20. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9751-:d:636857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.