IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i18p9697-d635699.html
   My bibliography  Save this article

EKC Test of the Relationship between Nitrogen Dioxide Pollution and Economic Growth—A Spatial Econometric Analysis Based on Chinese City Data

Author

Listed:
  • Chengyu Han

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Zhaolin Gu

    (School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Hexiang Yang

    (College of Health and Human Services, George Mason University, Fairfax, VA 22030, USA)

Abstract

During the just concluded 13th Five-Year Plan, China continued to maintain the momentum of rapid economic development, but still faced environmental pollution problems caused by this. Finding the relationship between Nitrogen Dioxide pollution and economic development is helpful and significant in better achieving and optimizing sustainable environmental development. Taking China’s 333 prefecture-level cities as samples from 2016 to 2018, the spatial lag model (SAR) was used to study the impact of economic growth on urban Nitrogen Dioxide pollution. The results show that Nitrogen Dioxide has strong positive characteristics of spatial spillover, but there is a linear relationship between economic growth and Nitrogen Dioxide concentration that slowly rises, and there is no inverted U-shaped relationship, which does not support the Environmental Kuznets Curve (EKC) hypothesis; The results also show the impact of per capita GDP, natural gas consumption, residential natural gas consumption, industrialization, and transportation development on the increase of Nitrogen Dioxide concentration, and the impact of green coverage on the decrease of Nitrogen Dioxide concentration. However, there is no significant relationship between technological investment and Nitrogen Dioxide concentration. The above conclusions are still valid after the robustness test, and recommendations are put forward to reduce Nitrogen Dioxide pollution.

Suggested Citation

  • Chengyu Han & Zhaolin Gu & Hexiang Yang, 2021. "EKC Test of the Relationship between Nitrogen Dioxide Pollution and Economic Growth—A Spatial Econometric Analysis Based on Chinese City Data," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9697-:d:635699
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/18/9697/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/18/9697/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    2. Bimonte, Salvatore & Stabile, Arsenio, 2017. "Land consumption and income in Italy: a case of inverted EKC," Ecological Economics, Elsevier, vol. 131(C), pages 36-43.
    3. Dinda, Soumyananda, 2005. "A theoretical basis for the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 53(3), pages 403-413, May.
    4. Pata, Ugur Korkut & Caglar, Abdullah Emre, 2021. "Investigating the EKC hypothesis with renewable energy consumption, human capital, globalization and trade openness for China: Evidence from augmented ARDL approach with a structural break," Energy, Elsevier, vol. 216(C).
    5. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2018. "Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 266-279.
    6. Leal, Patrícia Hipólito & Marques, António Cardoso, 2020. "Rediscovering the EKC hypothesis for the 20 highest CO2 emitters among OECD countries by level of globalization," International Economics, Elsevier, vol. 164(C), pages 36-47.
    7. Sinha, Avik & Shahbaz, Muhammad & Balsalobre, Daniel, 2017. "Exploring the Relationship between Energy Usage Segregation and Environmental Degradation in N-11 Countries," MPRA Paper 81212, University Library of Munich, Germany, revised 07 Sep 2017.
    8. Rashid Gill, Abid & Viswanathan, Kuperan K. & Hassan, Sallahuddin, 2018. "The Environmental Kuznets Curve (EKC) and the environmental problem of the day," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1636-1642.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weicheng Xu & Zhendong Zhang, 2022. "Impact of Coastal Urbanization on Marine Pollution: Evidence from China," IJERPH, MDPI, vol. 19(17), pages 1-25, August.
    2. Zhenbo Zhang & Mengfan Yan, 2022. "Reexamining the Environmental Kuznets Curve in Chinese Cities: Does Intergovernmental Competition Matter?," IJERPH, MDPI, vol. 19(22), pages 1-15, November.
    3. Hui Guo & Feng Zhou & Yawen Zhang & Zhen’an Yang, 2022. "Quantitative Analysis of Sulfur Dioxide Emissions in the Yangtze River Economic Belt from 1997 to 2017, China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    4. Zuzanna Kłos-Adamkiewicz & Elżbieta Szaruga & Agnieszka Gozdek & Magdalena Kogut-Jaworska, 2023. "Links between the Energy Intensity of Public Urban Transport, Regional Economic Growth and Urbanisation: The Case of Poland," Energies, MDPI, vol. 16(9), pages 1-25, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Wei & Liu, Yishu & Huang, Lihua, 2022. "Estimating environmental Kuznets Curve in the presence of eco-innovation and solar energy: An analysis of G-7 economies," Renewable Energy, Elsevier, vol. 189(C), pages 304-314.
    2. Kangyin Dong & Xiucheng Dong & Qingzhe Jiang, 2020. "How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels," The World Economy, Wiley Blackwell, vol. 43(6), pages 1665-1698, June.
    3. Danish, & Ulucak, Recep, 2022. "Analyzing energy innovation-emissions nexus in China: A novel dynamic simulation method," Energy, Elsevier, vol. 244(PB).
    4. Letisha S. Fong & Alberto Salvo & David Taylor, 2020. "Evidence of the environmental Kuznets curve for atmospheric pollutant emissions in Southeast Asia and implications for sustainable development: A spatial econometric approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(5), pages 1441-1456, September.
    5. Erik Hille & Bernhard Lambernd & Aviral K. Tiwari, 2021. "Any Signs of Green Growth? A Spatial Panel Analysis of Regional Air Pollution in South Korea," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 719-760, December.
    6. Daiva Makutėnienė & Algirdas Justinas Staugaitis & Valdemaras Makutėnas & Dalia Juočiūnienė & Yuriy Bilan, 2022. "An Empirical Investigation into Greenhouse Gas Emissions and Agricultural Economic Performance in Baltic Countries: A Non-Linear Framework," Agriculture, MDPI, vol. 12(9), pages 1-22, August.
    7. YuSheng Kong & Rabnawaz Khan, 2019. "To examine environmental pollution by economic growth and their impact in an environmental Kuznets curve (EKC) among developed and developing countries," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    8. Ellen Thio & MeiXuen Tan & Liang Li & Muhammad Salman & Xingle Long & Huaping Sun & Bangzhu Zhu, 2022. "The estimation of influencing factors for carbon emissions based on EKC hypothesis and STIRPAT model: Evidence from top 10 countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11226-11259, September.
    9. Roxana Pincheira & Felipe Zuniga, 2021. "Environmental Kuznets curve bibliographic map: a systematic literature review," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(S1), pages 1931-1956, April.
    10. Esposito, Piero & Patriarca, Fabrizio & Salvati, Luca, 2018. "Tertiarization and land use change: The case of Italy," Economic Modelling, Elsevier, vol. 71(C), pages 80-86.
    11. Nuno Carlos Leitão, 2021. "Testing the Role of Trade on Carbon Dioxide Emissions in Portugal," Economies, MDPI, vol. 9(1), pages 1-15, February.
    12. Kartal, Mustafa Tevfik & Ghosh, Sudeshna & Adebayo, Tomiwa Sunday, 2023. "Renewable energy effect on economy and environment: The case of G7 countries through novel bootstrap rolling window approach," Renewable Energy, Elsevier, vol. 216(C).
    13. Xu, Deyi & Sheraz, Muhammad & Hassan, Arshad & Sinha, Avik & Ullah, Saif, 2022. "Financial development, renewable energy and CO2 emission in G7 countries: New evidence from non-linear and asymmetric analysis," Energy Economics, Elsevier, vol. 109(C).
    14. Özlem Karadağ Albayrak & Samet Topal & Serhat Çamkaya, 2022. "The Impact of Economic Growth, Renewable Energy, Non-renewable Energy and Trade Openness on the Ecological Footprint and Forecasting in Turkiye: an Case of the ARDL and NMGM Forecasting Model," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(2), pages 139-154, December.
    15. Nan, Shijing & Huo, Yuchen & You, Wanhai & Guo, Yawei, 2022. "Globalization spatial spillover effects and carbon emissions: What is the role of economic complexity?," Energy Economics, Elsevier, vol. 112(C).
    16. Wang, Sophie Xuefei & Fu, Yu Benjamin & Zhang, Zhe George, 2015. "Population growth and the environmental Kuznets curve," China Economic Review, Elsevier, vol. 36(C), pages 146-165.
    17. Llorca, Manuel & Rodriguez-Alvarez, Ana, 2024. "Economic, environmental, and energy equity convergence: Evidence of a multi-speed Europe?," Ecological Economics, Elsevier, vol. 219(C).
    18. Soumyananda Dinda, 2014. "A theoretical basis for green growth," International Journal of Green Economics, Inderscience Enterprises Ltd, vol. 8(2), pages 177-189.
    19. Jaime Vallés-Giménez & Anabel Zárate-Marco, 2021. "A Spatial Dynamic Model for Export Intensity of Hazardous Industrial Waste: The Incentive Effect of Regional Environmental Policies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(4), pages 859-888, December.
    20. Michael L. Polemis & Mike G. Tsionas, 2023. "The environmental consequences of blockchain technology: A Bayesian quantile cointegration analysis for Bitcoin," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1602-1621, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9697-:d:635699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.