Analyzing Spatial Dependency of the 2016–2017 Korean HPAI Outbreak to Determine the Effective Culling Radius
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Paciorek, Christopher J., 2007. "Computational techniques for spatial logistic regression with large data sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3631-3653, May.
- An, Miran, 2019. "An Analysis of HPAI Risk Factors by Characteristics of Poultry Farm," Journal of Rural Development/Nongchon-Gyeongje, Korea Rural Economic Institute, vol. 42(3), September.
- Meilan An & Jeffrey Vitale & Kwideok Han & John N. Ng’ombe & Inbae Ji, 2021. "Effects of Spatial Characteristics on the Spread of the Highly Pathogenic Avian Influenza (HPAI) in Korea," IJERPH, MDPI, vol. 18(8), pages 1-13, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vahid Tadayon & Mohammad Mehdi Saber, 2023. "A Spatial Logistic Regression Model Based on a Valid Skew-Gaussian Latent Field," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 59-73, March.
- Gschlößl, Susanne & Czado, Claudia, 2008. "Does a Gibbs sampler approach to spatial Poisson regression models outperform a single site MH sampler?," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4184-4202, May.
- Sudipto Banerjee & Alan E. Gelfand & Andrew O. Finley & Huiyan Sang, 2008. "Gaussian predictive process models for large spatial data sets," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(4), pages 825-848, September.
- Weimann, Amy & Dai, Dajun & Oni, Tolu, 2016. "A cross-sectional and spatial analysis of the prevalence of multimorbidity and its association with socioeconomic disadvantage in South Africa: A comparison between 2008 and 2012," Social Science & Medicine, Elsevier, vol. 163(C), pages 144-156.
- repec:jss:jstsof:19:i02 is not listed on IDEAS
- Dorota Młynarczyk & Carmen Armero & Virgilio Gómez-Rubio & Pedro Puig, 2021. "Bayesian Analysis of Population Health Data," Mathematics, MDPI, vol. 9(5), pages 1-15, March.
- Andrew O. Finley & Sudipto Banerjee & Patrik Waldmann & Tore Ericsson, 2009. "Hierarchical Spatial Modeling of Additive and Dominance Genetic Variance for Large Spatial Trial Datasets," Biometrics, The International Biometric Society, vol. 65(2), pages 441-451, June.
- Qian Ren & Sudipto Banerjee, 2013. "Hierarchical Factor Models for Large Spatially Misaligned Data: A Low-Rank Predictive Process Approach," Biometrics, The International Biometric Society, vol. 69(1), pages 19-30, March.
- Brian J. Reich & Montserrat Fuentes & Amy H. Herring & Kelly R. Evenson, 2010. "Bayesian Variable Selection for Multivariate Spatially Varying Coefficient Regression," Biometrics, The International Biometric Society, vol. 66(3), pages 772-782, September.
- Berrett, Candace & Calder, Catherine A., 2012. "Data augmentation strategies for the Bayesian spatial probit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 478-490.
- Zoe Gibbs & Chris Groendyke & Brian Hartman & Robert Richardson, 2020. "Modeling County-Level Spatio-Temporal Mortality Rates Using Dynamic Linear Models," Risks, MDPI, vol. 8(4), pages 1-15, November.
- Jo Eidsvik & Sara Martino & Håvard Rue, 2009. "Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(1), pages 1-22, March.
- Ren, Qian & Banerjee, Sudipto & Finley, Andrew O. & Hodges, James S., 2011. "Variational Bayesian methods for spatial data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3197-3217, December.
- Liang, Shengde & Banerjee, Sudipto & Bushhouse, Sally & Finley, Andrew O. & Carlin, Bradley P., 2008. "Hierarchical multiresolution approaches for dense point-level breast cancer treatment data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2650-2668, January.
More about this item
Keywords
highly pathogenic avian influenza; HPAI; spatial random effects logistic model; spatial dependency; spatial autocorrelation; effective culling radius;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:18:p:9643-:d:634634. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.