IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i17p8960-d621958.html
   My bibliography  Save this article

Assessment of Future Water Yield and Water Purification Services in Data Scarce Region of Northwest China

Author

Listed:
  • Xu Yang

    (Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China
    Collaborative Innovation Center for Geographic Information Technology of Wisdom Central Plain, Zhengzhou 450052, China)

  • Ruishan Chen

    (School of Design, Shanghai Jiaotong University, Shanghai 200240, China)

  • Guangxing Ji

    (The College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China)

  • Chao Wang

    (Institute of Geographical Sciences, Henan Academy of Sciences, Zhengzhou 450052, China
    Collaborative Innovation Center for Geographic Information Technology of Wisdom Central Plain, Zhengzhou 450052, China)

  • Yuanda Yang

    (The College of Resources and Environment, Henan University of Economics and Law, Zhengzhou 450046, China)

  • Jianhua Xu

    (Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai 200241, China
    Research Center for East-West Cooperation in China, East China Normal University, Shanghai 200241, China
    School of Geographic Sciences, East China Normal University, Shanghai 200241, China)

Abstract

Water shortage and pollution have become prominent in the arid regions of northwest China, seriously affecting human survival and sustainable development. The Bosten Lake basin has been considered as an example of an arid region in northwest China, and the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model has been used to quantitatively evaluate the future water yield and water purification services for four representative concentration pathways (RCP) scenarios. The results show that for the four RCP scenarios, the annual average precipitation in 2020–2050 decreases compared to that in 1985–2015; the area of cultivated land and unused land decreases, and the area of other land-use types increases from 2015 to 2050. The water yield service reduces, while the water purification service increases from 2015 to 2050 in the Bosten Lake basin. In 2050, the water yield and water purification services are the best for the RCP6.0 scenario, and are the worse for the RCP4.5 scenario and RCP8.5 scenario, respectively. The distribution of the water yield and water purification services show a gradual decline from northwest to southeast.

Suggested Citation

  • Xu Yang & Ruishan Chen & Guangxing Ji & Chao Wang & Yuanda Yang & Jianhua Xu, 2021. "Assessment of Future Water Yield and Water Purification Services in Data Scarce Region of Northwest China," IJERPH, MDPI, vol. 18(17), pages 1-17, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:8960-:d:621958
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/17/8960/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/17/8960/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thian Gan, 2000. "Reducing Vulnerability of Water Resources of Canadian Prairies to Potential Droughts and Possible Climatic Warming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(2), pages 111-135, April.
    2. Ze-Xin Fan & Axel Thomas, 2013. "Spatiotemporal variability of reference evapotranspiration and its contributing climatic factors in Yunnan Province, SW China, 1961–2004," Climatic Change, Springer, vol. 116(2), pages 309-325, January.
    3. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    4. Bao, Chao & Fang, Chuang-lin, 2007. "Water resources constraint force on urbanization in water deficient regions: A case study of the Hexi Corridor, arid area of NW China," Ecological Economics, Elsevier, vol. 62(3-4), pages 508-517, May.
    5. Guangxing Ji & Zhizhu Lai & Haibin Xia & Hao Liu & Zheng Wang, 2021. "Future Runoff Variation and Flood Disaster Prediction of the Yellow River Basin Based on CA-Markov and SWAT," Land, MDPI, vol. 10(4), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiangqiang Yang & Pian Zhang & Xiaocong Qiu & Guanglai Xu & Jianyu Chi, 2023. "Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China," IJERPH, MDPI, vol. 20(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Danni & Li, Sien & Kang, Shaozhong & Du, Taisheng & Guo, Ping & Mao, Xiaomin & Tong, Ling & Hao, Xinmei & Ding, Risheng & Niu, Jun, 2020. "Effect of drip irrigation on wheat evapotranspiration, soil evaporation and transpiration in Northwest China," Agricultural Water Management, Elsevier, vol. 232(C).
    2. Xiaqing Feng & Guangxin Zhang & Xiongrui Yin, 2011. "Hydrological Responses to Climate Change in Nenjiang River Basin, Northeastern China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(2), pages 677-689, January.
    3. Wang, Linlin & Li, Qiang & Coulter, Jeffrey A. & Xie, Junhong & Luo, Zhuzhu & Zhang, Renzhi & Deng, Xiping & Li, Linglin, 2020. "Winter wheat yield and water use efficiency response to organic fertilization in northern China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 229(C).
    4. Guangxing Ji & Huiyun Song & Hejie Wei & Leying Wu, 2021. "Attribution Analysis of Climate and Anthropic Factors on Runoff and Vegetation Changes in the Source Area of the Yangtze River from 1982 to 2016," Land, MDPI, vol. 10(6), pages 1-13, June.
    5. Shrestha, N.K. & Shukla, S., 2014. "Basal crop coefficients for vine and erect crops with plastic mulch in a sub-tropical region," Agricultural Water Management, Elsevier, vol. 143(C), pages 29-37.
    6. Lv, Zhaoyan & Diao, Ming & Li, Weihua & Cai, Jian & Zhou, Qin & Wang, Xiao & Dai, Tingbo & Cao, Weixing & Jiang, Dong, 2019. "Impacts of lateral spacing on the spatial variations in water use and grain yield of spring wheat plants within different rows in the drip irrigation system," Agricultural Water Management, Elsevier, vol. 212(C), pages 252-261.
    7. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    8. Lou, Bo & Ulgiati, Sergio, 2013. "Identifying the environmental support and constraints to the Chinese economic growth—An application of the Emergy Accounting method," Energy Policy, Elsevier, vol. 55(C), pages 217-233.
    9. Ali, Shahzad & Jan, Amanullah & Zhang, Peng & Khan, Muhammad Numan & Cai, Tei & Wei, Ting & Ren, Xiaolong & Jia, Qianmin & Han, Qingfang & Jia, Zhikuan, 2016. "Effects of ridge-covering mulches on soil water storage and maize production under simulated rainfall in semiarid regions of China," Agricultural Water Management, Elsevier, vol. 178(C), pages 1-11.
    10. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    12. Boyu Wang & Xiang Gao, 2021. "Temporal and spatial variations of water resources constraint intensity on urbanization in the Shiyang River Basin, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10038-10055, July.
    13. Al-Qthanin, Rahmah N. & AbdAlghafar, Ibrahim M. & Mahmoud, Doaa S. & Fikry, Ahmed M. & AlEnezi, Norah A. & Elesawi, Ibrahim Eid & AbuQamar, Synan F. & Gad, Mohamed M. & El-Tarabily, Khaled A., 2024. "Impact of rice straw mulching on water consumption and productivity of orange trees [Citrus sinensis (L.) Osbeck]," Agricultural Water Management, Elsevier, vol. 298(C).
    14. Liang, Jiaping & Shi, Wenjuan & He, Zijian & Pang, Linna & Zhang, Yanchao, 2019. "Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China," Agricultural Water Management, Elsevier, vol. 218(C), pages 48-59.
    15. Kaize Zhang & Juqin Shen & Ran He & Bihang Fan & Han Han, 2019. "Dynamic Analysis of the Coupling Coordination Relationship between Urbanization and Water Resource Security and Its Obstacle Factor," IJERPH, MDPI, vol. 16(23), pages 1-16, November.
    16. Duan, Chenxiao & Chen, Guangjie & Hu, Yajin & Wu, Shufang & Feng, Hao & Dong, Qin’ge, 2021. "Alternating wide ridges and narrow furrows with film mulching improves soil hydrothermal conditions and maize water use efficiency in dry sub-humid regions," Agricultural Water Management, Elsevier, vol. 245(C).
    17. E. Preziosi & A. Bon & E. Romano & A. Petrangeli & S. Casadei, 2013. "Vulnerability to Drought of a Complex Water Supply System. The Upper Tiber Basin Case Study (Central Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4655-4678, October.
    18. Zhao, Rongqin & Liu, Ying & Tian, Mengmeng & Ding, Minglei & Cao, Lianhai & Zhang, Zhanping & Chuai, Xiaowei & Xiao, Liangang & Yao, Lunguang, 2018. "Impacts of water and land resources exploitation on agricultural carbon emissions: The water-land-energy-carbon nexus," Land Use Policy, Elsevier, vol. 72(C), pages 480-492.
    19. Palatnik, Ruslana & Shechter, Mordechai, 2008. "Can Climate Change Mitigation Policy be Beneficial for the Israeli Economy? A Computable General Equilibrium Analysis," Conference papers 331792, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    20. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:17:p:8960-:d:621958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.