IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i15p7927-d602108.html
   My bibliography  Save this article

Association of X-ray Absorptiometry Body Composition Measurements with Basic Anthropometrics and Mortality Hazard

Author

Listed:
  • Nir Y. Krakauer

    (Department of Civil Engineering, City College of New York, New York, NY 10031, USA)

  • Jesse C. Krakauer

    (Associated Physicians/Endocrinology, Berkley, MI 48072, USA)

Abstract

Dual-energy X-ray absorptiometry (DEXA) is a non-invasive imaging modality that can estimate whole-body and regional composition in terms of fat, lean, and bone mass. We examined the ability of DEXA body composition measures (whole-body, trunk, and limb fat mass and fat-free mass) to predict mortality in conjunction with basic body measures (anthropometrics), expressed using body mass index (BMI) and a body shape index (ABSI). We used data from the 1999–2006 United States National Health and Nutrition Examination Survey (NHANES), with mortality follow-up to 2015. We found that all DEXA-measured masses were highly correlated with each other and with ABSI and that adjustment for BMI and ABSI reduced these dependencies. Whole-body composition did not substantially improve mortality prediction compared to basic anthropometrics alone, but regional composition did, with high trunk fat-free mass and low limb fat-free mass both associated with elevated mortality risk. These findings illustrate how DEXA body composition could guide health assessment in conjunction with the more widely employed simple anthropometrics.

Suggested Citation

  • Nir Y. Krakauer & Jesse C. Krakauer, 2021. "Association of X-ray Absorptiometry Body Composition Measurements with Basic Anthropometrics and Mortality Hazard," IJERPH, MDPI, vol. 18(15), pages 1-13, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:7927-:d:602108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/15/7927/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/15/7927/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Royston, 2006. "Explained variation for survival models," Stata Journal, StataCorp LP, vol. 6(1), pages 83-96, March.
    2. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    3. Nir Y. Krakauer & Jesse C. Krakauer, 2020. "Association of Body Shape Index (ABSI) with Hand Grip Strength," IJERPH, MDPI, vol. 17(18), pages 1-12, September.
    4. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    5. Thomas L Kelly & Kevin E Wilson & Steven B Heymsfield, 2009. "Dual Energy X-Ray Absorptiometry Body Composition Reference Values from NHANES," PLOS ONE, Public Library of Science, vol. 4(9), pages 1-8, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nir Y. Krakauer & Jesse C. Krakauer, 2020. "Association of Body Shape Index (ABSI) with Hand Grip Strength," IJERPH, MDPI, vol. 17(18), pages 1-12, September.
    2. Janez Stare & Maja Pohar Perme & Robin Henderson, 2011. "A Measure of Explained Variation for Event History Data," Biometrics, The International Biometric Society, vol. 67(3), pages 750-759, September.
    3. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    4. Chin-Tsang Chiang & Shr-Yan Huang, 2009. "Estimation for the Optimal Combination of Markers without Modeling the Censoring Distribution," Biometrics, The International Biometric Society, vol. 65(1), pages 152-158, March.
    5. Don Harding, 2010. "Applying shape and phase restrictions in generalized dynamic categorical models of the business cycle," NCER Working Paper Series 58, National Centre for Econometric Research.
    6. Michael S. Delgado & Daniel J. Henderson & Christopher F. Parmeter, 2014. "Does Education Matter for Economic Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 334-359, June.
    7. Juan Manuel Julio & Norberto Rodríguez & Héctor Manuel Zárate, 2005. "Estimating the COP Exchange Rate Volatility Smile and the Market Effect of Central Bank Interventions: A CHARN Approach," Borradores de Economia 2605, Banco de la Republica.
    8. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    9. Te-Ling Ma & Tsung-Hui Hu & Chao-Hung Hung & Jing-Houng Wang & Sheng-Nan Lu & Chien-Hung Chen, 2019. "Incidence and predictors of retreatment in chronic hepatitis B patients after discontinuation of entecavir or tenofovir treatment," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-16, October.
    10. Rama Natarajan & Dana Aljaber & Dawn Au & Christine Thai & Angelica Sanchez & Alan Nunez & Cristal Resto & Tanya Chavez & Marta M. Jankowska & Tarik Benmarhnia & Jiue-An Yang & Veronica Jones & Jernej, 2020. "Environmental Exposures during Puberty: Window of Breast Cancer Risk and Epigenetic Damage," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    11. Mima Stanković & Ilma Čaprić & Dušan Đorđević & Stefan Đorđević & Adem Preljević & Admira Koničanin & Džejla Maljanović & Hamza Nailović & Iso Muković & Igor Jelaska & Goran Sporiš, 2023. "Relationship between Body Composition and Specific Motor Abilities According to Position in Elite Female Soccer Players," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    12. Yingye Zheng & Patrick Heagerty, 2004. "Semiparametric Estimation of Time-Dependent: ROC Curves for Longitudinal Marker Data," UW Biostatistics Working Paper Series 1052, Berkeley Electronic Press.
    13. Karimu, Amin & Brännlund, Runar, 2013. "Functional form and aggregate energy demand elasticities: A nonparametric panel approach for 17 OECD countries," Energy Economics, Elsevier, vol. 36(C), pages 19-27.
    14. Liao, Jun & Zou, Guohua, 2020. "Corrected Mallows criterion for model averaging," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    15. Lu, Jun & Lin, Lu, 2018. "Feature screening for multi-response varying coefficient models with ultrahigh dimensional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 242-254.
    16. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    17. Salvatore Ingrassia & Simona Minotti & Giorgio Vittadini, 2012. "Local Statistical Modeling via a Cluster-Weighted Approach with Elliptical Distributions," Journal of Classification, Springer;The Classification Society, vol. 29(3), pages 363-401, October.
    18. Maria Sassi, 2010. "OLS and GWR Approaches to Agricultural Convergence in the EU-15," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 16(1), pages 96-108, February.
    19. Nagler Thomas & Schellhase Christian & Czado Claudia, 2017. "Nonparametric estimation of simplified vine copula models: comparison of methods," Dependence Modeling, De Gruyter, vol. 5(1), pages 99-120, January.
    20. Arturo Bujanda & Thomas M. Fullerton, 2017. "Impacts of transportation infrastructure on single-family property values," Applied Economics, Taylor & Francis Journals, vol. 49(51), pages 5183-5199, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:7927-:d:602108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.