IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i15p7907-d601696.html
   My bibliography  Save this article

Designing an Indoor Radon Risk Exposure Indicator (IRREI): An Evaluation Tool for Risk Management and Communication in the IoT Age

Author

Listed:
  • Sérgio Ivan Lopes

    (ADiT-Lab, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal
    IT—Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal)

  • Leonel J. R. Nunes

    (PROMETHEUS, Unidade de Investigação em Materiais, Energia e Ambiente para a Sustentabilidade, Escola Superior Agrária, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal)

  • António Curado

    (PROMETHEUS, Unidade de Investigação em Materiais, Energia e Ambiente para a Sustentabilidade, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua da Escola Industrial e Comercial de Nun’Alvares, 4900-347 Viana do Castelo, Portugal)

Abstract

The explosive data growth in the current information age requires consistent new methodologies harmonized with the new IoT era for data analysis in a space–time context. Moreover, intuitive data visualization is a central feature in exploring, interpreting, and extracting specific insights for subsequent numerical data representation. This integrated process is normally based on the definition of relevant metrics and specific performance indicators, both computed upon continuous real-time data, considering the specificities of a particular application case for data validation. This article presents an IoT-oriented evaluation tool for Radon Risk Management (RRM), based on the design of a simple and intuitive Indoor Radon Risk Exposure Indicator (IRREI), specifically tailored to be used as a decision-making aid tool for building owners, building designers, and buildings managers, or simply as an alert flag for the problem awareness of ordinary citizens. The proposed methodology was designed for graphic representation aligned with the requirements of the current IoT age, i.e., the methodology is robust enough for continuous data collection with specific Spatio-temporal attributes and, therefore, a set of adequate Radon risk-related metrics can be extracted and proposed. Metrics are summarized considering the application case, taken as a case study for data validation, by including relevant variables to frame the study, such as the regulatory International Commission on Radiological Protection (ICRP) dosimetric limits, building occupancy (spatial dimension), and occupants’ exposure periods (temporal dimension). This work has the following main contributions: (1) providing a historical perspective regarding RRM indicator evolution along time; (2) outlining both the formulation and the validation of the proposed IRREI indicator; (3) implementing an IoT-oriented methodology for an RRM indicator; and (4) a discussion on Radon risk public perception, undertaken based on the results obtained after assessment of the IRREI indicator by applying a screening questionnaire with a total of 873 valid answers.

Suggested Citation

  • Sérgio Ivan Lopes & Leonel J. R. Nunes & António Curado, 2021. "Designing an Indoor Radon Risk Exposure Indicator (IRREI): An Evaluation Tool for Risk Management and Communication in the IoT Age," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:7907-:d:601696
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/15/7907/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/15/7907/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lantz, P.M. & Mendez, D. & Philbert, M.A., 2013. "Radon, smoking, and lung cancer: The need to refocus radon control policy," American Journal of Public Health, American Public Health Association, vol. 103(3), pages 443-447.
    2. Jagriti Saini & Maitreyee Dutta & Gonçalo Marques, 2020. "Indoor Air Quality Monitoring Systems Based on Internet of Things: A Systematic Review," IJERPH, MDPI, vol. 17(14), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonel J. R. Nunes & António Curado & Luís C. C. da Graça & Salete Soares & Sérgio Ivan Lopes, 2022. "Impacts of Indoor Radon on Health: A Comprehensive Review on Causes, Assessment and Remediation Strategies," IJERPH, MDPI, vol. 19(7), pages 1-14, March.
    2. Liliana Cori & Olivia Curzio & Gabriele Donzelli & Elisa Bustaffa & Fabrizio Bianchi, 2022. "A Systematic Review of Radon Risk Perception, Awareness, and Knowledge: Risk Communication Options," Sustainability, MDPI, vol. 14(17), pages 1-27, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hugo O. Garcés & Claudia Durán & Eduardo Espinosa & Alejandro Jerez & Fredi Palominos & Marcela Hinojosa & Raúl Carrasco, 2022. "Monitoring of Thermal Comfort and Air Quality for Sustainable Energy Management inside Hospitals Based on Online Analytical Processing and the Internet of Things," IJERPH, MDPI, vol. 19(19), pages 1-23, September.
    2. Iñigo Rodríguez-Vidal & Alexander Martín-Garín & Francisco González-Quintial & José Miguel Rico-Martínez & Rufino J. Hernández-Minguillón & Jorge Otaegi, 2022. "Response to the COVID-19 Pandemic in Classrooms at the University of the Basque Country through a User-Informed Natural Ventilation Demonstrator," IJERPH, MDPI, vol. 19(21), pages 1-28, November.
    3. Narongchai Autsavapromporn & Pitchayaponne Klunklin & Chalat Threeratana & Wirote Tuntiwechapikul & Masahiro Hosoda & Shinji Tokonami, 2018. "Short Telomere Length as a Biomarker Risk of Lung Cancer Development Induced by High Radon Levels: A Pilot Study," IJERPH, MDPI, vol. 15(10), pages 1-13, September.
    4. Jorge Cerqueiro-Pequeño & Alberto Comesaña-Campos & Manuel Casal-Guisande & José-Benito Bouza-Rodríguez, 2020. "Design and Development of a New Methodology Based on Expert Systems Applied to the Prevention of Indoor Radon Gas Exposition Risks," IJERPH, MDPI, vol. 18(1), pages 1-32, December.
    5. Alexandru Ilieș & Tudor Caciora & Florin Marcu & Zharas Berdenov & Gabriela Ilieș & Bahodirhon Safarov & Nicolaie Hodor & Vasile Grama & Maisa Ali Al Shomali & Dorina Camelia Ilies & Ovidiu Gaceu & Mo, 2022. "Analysis of the Interior Microclimate in Art Nouveau Heritage Buildings for the Protection of Exhibits and Human Health," IJERPH, MDPI, vol. 19(24), pages 1-26, December.
    6. Dorina Camelia Ilies & Grigore Vasile Herman & Bahodirhon Safarov & Alexandru Ilies & Lucian Blaga & Tudor Caciora & Ana Cornelia Peres & Vasile Grama & Sigit Widodo Bambang & Telesphore Brou & Franco, 2023. "Indoor Air Quality Perception in Built Cultural Heritage in Times of Climate Change," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
    7. Kelsey Gordon & Paul D. Terry & Xingxing Liu & Tiffany Harris & Don Vowell & Bud Yard & Jiangang Chen, 2018. "Radon in Schools: A Brief Review of State Laws and Regulations in the United States," IJERPH, MDPI, vol. 15(10), pages 1-9, September.
    8. Shih-Chun Candice Lung & To Thi Hien & Maria Obiminda L. Cambaliza & Ohnmar May Tin Hlaing & Nguyen Thi Kim Oanh & Mohd Talib Latif & Puji Lestari & Abdus Salam & Shih-Yu Lee & Wen-Cheng Vincent Wang , 2022. "Research Priorities of Applying Low-Cost PM 2.5 Sensors in Southeast Asian Countries," IJERPH, MDPI, vol. 19(3), pages 1-37, January.
    9. C. Bambang Dwi Kuncoro & Moch Bilal Zaenal Asyikin & Aurelia Amaris, 2022. "Smart-Autonomous Wireless Volatile Organic Compounds Sensor Node for Indoor Air Quality Monitoring Application," IJERPH, MDPI, vol. 19(4), pages 1-15, February.
    10. Claudio Gariazzo & Alessandra Binazzi & Marco Alfò & Stefania Massari & Massimo Stafoggia & Alessandro Marinaccio, 2021. "Predictors of Lung Cancer Risk: An Ecological Study Using Mortality and Environmental Data by Municipalities in Italy," IJERPH, MDPI, vol. 18(4), pages 1-15, February.
    11. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.
    12. Satheesh Abimannan & El-Sayed M. El-Alfy & Shahid Hussain & Yue-Shan Chang & Saurabh Shukla & Dhivyadharsini Satheesh & John G. Breslin, 2023. "Towards Federated Learning and Multi-Access Edge Computing for Air Quality Monitoring: Literature Review and Assessment," Sustainability, MDPI, vol. 15(18), pages 1-34, September.
    13. Heangwoo Lee, 2020. "A Basic Study on the Performance Evaluation of a Movable Light Shelf with a Rolling Reflector That Can Change Reflectivity to Improve the Visual Environment," IJERPH, MDPI, vol. 17(22), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:7907-:d:601696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.