IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2020i1p7-d466279.html
   My bibliography  Save this article

Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality

Author

Listed:
  • Jessica A. Rubin

    (Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA)

  • Josef H. Görres

    (Plant and Soil Science, University of Vermont, Burlington, VT 05405, USA)

Abstract

During this 6th Great Extinction, freshwater quality is imperiled by upland terrestrial practices. Phosphorus, a macronutrient critical for life, can be a concerning contaminant when excessively present in waterways due to its stimulation of algal and cyanobacterial blooms, with consequences for ecosystem functioning, water use, and human and animal health. Landscape patterns from residential, industrial and agricultural practices release phosphorus at alarming rates and concentrations threaten watershed communities. In an effort to reconcile the anthropogenic effects of phosphorus pollution, several strategies are available to land managers. These include source reduction, contamination event prevention and interception. A total of 80% of terrestrial plants host mycorrhizae which facilitate increased phosphorus uptake and thus removal from soil and water. This symbiotic relationship between fungi and plants facilitates a several-fold increase in phosphorus uptake. It is surprising how little this relationship has been encouraged to mitigate phosphorus for water quality improvement. This paper explores how facilitating this symbiosis in different landscape and land-use contexts can help reduce the application of fertility amendments, prevent non-point source leaching and erosion, and intercept remineralized phosphorus before it enters surface water ecosystems. This literature survey offers promising insights into how mycorrhizae can aid ecological restoration to reconcile humans’ damage to Earth’s freshwater. We also identify areas where research is needed.

Suggested Citation

  • Jessica A. Rubin & Josef H. Görres, 2020. "Potential for Mycorrhizae-Assisted Phytoremediation of Phosphorus for Improved Water Quality," IJERPH, MDPI, vol. 18(1), pages 1-23, December.
  • Handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:7-:d:466279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/1/7/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/1/7/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sato, Toshio & Qadir, Manzoor & Yamamoto, Sadahiro & Endo, Tsuneyoshi & Zahoor, Ahmad, 2013. "Global, regional, and country level need for data on wastewater generation, treatment, and use," Agricultural Water Management, Elsevier, vol. 130(C), pages 1-13.
    2. Li, Xiaona & Zhang, Weiwei & Zhao, Chunqiao & Li, Hongjie & Shi, Ruishuang, 2020. "Nitrogen interception and fate in vegetated ditches using the isotope tracer method: A simulation study in northern China," Agricultural Water Management, Elsevier, vol. 228(C).
    3. Joel D. Blum & Andrea Klaue & Carmen A. Nezat & Charles T. Driscoll & Chris E. Johnson & Thomas G. Siccama & Christopher Eagar & Timothy J. Fahey & Gene E. Likens, 2002. "Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems," Nature, Nature, vol. 417(6890), pages 729-731, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianheng Jiang & Maomao Wang & Wei Zhang & Cheng Zhu & Feijuan Wang, 2024. "A Comprehensive Analysis of Agricultural Non-Point Source Pollution in China: Current Status, Risk Assessment and Management Strategies," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    2. David Kocman & Simon J. Wilson & Helen M. Amos & Kevin H. Telmer & Frits Steenhuisen & Elsie M. Sunderland & Robert P. Mason & Peter Outridge & Milena Horvat, 2017. "Toward an Assessment of the Global Inventory of Present-Day Mercury Releases to Freshwater Environments," IJERPH, MDPI, vol. 14(2), pages 1-16, February.
    3. Zvi Baum & Ruslana Rachel Palatnik & Iddo Kan & Mickey Rapaport-Rom, 2016. "Economic Impacts of Water Scarcity Under Diverse Water Salinities," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-22, March.
    4. Lan Song & Yunfei Bi & Qingsong Bo & Tianyang Li & Yonghao Li & Binghui He & Xinmei Zhao, 2024. "Characteristics of Runoff and Sediment Yield in a Simulated Hedgerow–Grass Ditch System in Sloping Lands with Regosols," Land, MDPI, vol. 13(8), pages 1-14, August.
    5. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    6. Graça, Manjate, 2018. "Scope effects in contingent valuation: an application to the valuation of irrigation water quality improvements in Infulene Valley, Mozambique," Research Theses 334752, Collaborative Masters Program in Agricultural and Applied Economics.
    7. Manzoor Qadir, 2018. "Policy Note: "Addressing Trade-offs to Promote Safely Managed Wastewater in Developing Countries"," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 1-10, April.
    8. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    9. Ami Reznik & Ariel Dinar, 2022. "Local conditions and the economic feasibility of urban wastewater recycling in irrigated agriculture: Lessons from a stochastic regional analysis in California," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 2115-2130, December.
    10. Alcaide Zaragoza, Carmen & Fernández García, Irene & Martín García, Isabel & Camacho Poyato, Emilio & Rodríguez Díaz, Juan Antonio, 2022. "Spatio-temporal analysis of nitrogen variations in an irrigation distribution network using reclaimed water for irrigating olive trees," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Ricart, Sandra & Rico, Antonio M., 2019. "Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor," Agricultural Water Management, Elsevier, vol. 217(C), pages 426-439.
    12. José Luis Cárdenas-Talero & Jorge Antonio Silva-Leal & Andrea Pérez-Vidal & Patricia Torres-Lozada, 2022. "The Influence of Municipal Wastewater Treatment Technologies on the Biological Stabilization of Sewage Sludge: A Systematic Review," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
    13. Orlando Durán & Paulo Andrés Durán, 2018. "Activity Based Costing for Wastewater Treatment and Reuse under Uncertainty: A Fuzzy Approach," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    14. Stacy Slobodiuk & Caitlin Niven & Greer Arthur & Siddhartha Thakur & Ayse Ercumen, 2021. "Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review," IJERPH, MDPI, vol. 18(21), pages 1-19, October.
    15. Never, Babette, 2016. "Wastewater systems and energy saving in urban India: governing the Water-Energy-Food Nexus series," IDOS Discussion Papers 12/2016, German Institute of Development and Sustainability (IDOS).
    16. Manzoor Qadir & Pay Drechsel & Blanca Jiménez Cisneros & Younggy Kim & Amit Pramanik & Praem Mehta & Oluwabusola Olaniyan, 2020. "Global and regional potential of wastewater as a water, nutrient and energy source," Natural Resources Forum, Blackwell Publishing, vol. 44(1), pages 40-51, February.
    17. Morteza Feizi & Mohsen Jalali & Gianacrlo Renella, 2019. "Assessment of nutrient and heavy metal content and speciation in sewage sludge from different locations in Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 657-675, February.
    18. Stepping, Katharina, 2016. "Urban sewage in Brazil: drivers of and obstacles to wastewater treatment and reuse. Governing the Water-Energy-Food Nexus Series," IDOS Discussion Papers 26/2016, German Institute of Development and Sustainability (IDOS).
    19. Zhang, Jian & Yan, Min & Lu, Xin & Wang, Tao, 2024. "Nutrient removal performance from agricultural drainage by strengthening ecological ditches in hilly areas," Agricultural Water Management, Elsevier, vol. 291(C).
    20. Hussein K. Okoro & Muyiwa M. Orosun & Faith A. Oriade & Tawakalit M. Momoh-Salami & Clement O. Ogunkunle & Adewale G. Adeniyi & Caliphs Zvinowanda & Jane C. Ngila, 2023. "Potentially Toxic Elements in Pharmaceutical Industrial Effluents: A Review on Risk Assessment, Treatment, and Management for Human Health," Sustainability, MDPI, vol. 15(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2020:i:1:p:7-:d:466279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.