IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2767-d346740.html
   My bibliography  Save this article

Carbonyls and Carbon Monoxide Emissions from Electronic Cigarettes Affected by Device Type and Use Patterns

Author

Listed:
  • Yeongkwon Son

    (Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA)

  • Chiranjivi Bhattarai

    (Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA)

  • Vera Samburova

    (Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA)

  • Andrey Khlystov

    (Division of Atmospheric Sciences, Desert Research Institute, Reno, NV 89512, USA)

Abstract

Dangerous levels of harmful chemicals in electronic cigarette (e-cigarette) aerosols were reported by several studies, but variability in e-cigarette design and use patterns, and a rapid development of new devices, such as JUUL, hamper efforts to develop standardized testing protocols and understand health risks associated with e-cigarette use. In this study, we investigated the relative importance of e-cigarette design, power output, liquid composition, puff topography on e-cigarette emissions of carbonyl compounds, carbon monoxide (CO), and nicotine. Four popular e-cigarette devices representing the most common e-cigarette types (e.g., cig-a-like, top-coil, ‘mod’, and ‘pod’) were tested. Under the tested vaping conditions, a top-coil device generated the highest amounts of formaldehyde and CO. A ‘pod’ type device (i.e., JUUL) emitted the highest amounts of nicotine, while generating the lowest levels of carbonyl and CO as compared to other tested e-cigarettes. Emissions increased nearly linearly with puff duration, while puff flow had a relatively small effect. Flavored e-liquids generated more carbonyls and CO than unflavored liquids. Carbonyl concentrations and CO in e-cigarette aerosols were found to be well correlated. While e-cigarettes emitted generally less CO and carbonyls than conventional cigarettes, daily carbonyl exposures from e-cigarette use could still exceed acute exposure limits, with the top-coil device potentially posing more harm than conventional cigarettes.

Suggested Citation

  • Yeongkwon Son & Chiranjivi Bhattarai & Vera Samburova & Andrey Khlystov, 2020. "Carbonyls and Carbon Monoxide Emissions from Electronic Cigarettes Affected by Device Type and Use Patterns," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2767-:d:346740
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2767/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2767/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandra Noël & Arpita Ghosh, 2022. "Carbonyl Profiles of Electronic Nicotine Delivery System (ENDS) Aerosols Reflect Both the Chemical Composition and the Numbers of E-Liquid Ingredients–Focus on the In Vitro Toxicity of Strawberry and ," IJERPH, MDPI, vol. 19(24), pages 1-18, December.
    2. Edward C. Hensel & Nathan C. Eddingsaas & Qutaiba M. Saleh & Shehan Jayasekera & Samantha Emma Sarles & A. Gary DiFrancesco & Risa J. Robinson, 2022. "Proposed Standard Test Protocols and Outcome Measures for Quantitative Comparison of Emissions from Electronic Nicotine Delivery Systems," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    3. Yeongkwon Son & Clifford Weisel & Olivia Wackowski & Stephan Schwander & Cristine Delnevo & Qingyu Meng, 2020. "The Impact of Device Settings, Use Patterns, and Flavorings on Carbonyl Emissions from Electronic Cigarettes," IJERPH, MDPI, vol. 17(16), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2767-:d:346740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.