IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2621-d344243.html
   My bibliography  Save this article

Sonoelectrochemical Degradation of Propyl Paraben: An Examination of the Synergy in Different Water Matrices

Author

Listed:
  • Zacharias Frontistis

    (Department of Chemical Engineering, University of Western Macedonia, GR-50100 Kozani, Greece)

Abstract

The synergistic action of anodic oxidation using boron-doped diamond and low-frequency ultrasound in different water matrices and operating conditions for the decomposition of the emerging contaminant propyl paraben was investigated. The degree of synergy was found to decrease with an increase in current in the range 1.25–6.25 mA/cm 2 or the ultrasound power until 36 W/L, where a further decrease was observed. Despite the fact that the increased propyl paraben concentration decreased the observed kinetic constant for both the separated and the hybrid process, the degree of synergy was increased from 37.3 to 43.4% for 0.5 and 2 mg/L propyl paraben, respectively. Bicarbonates (100–250 mg/L) or humic acid (10–20 mg/L) enhanced the synergy significantly by up to 55.8%, due to the higher demand for reactive oxygen species. The presence of chloride ions decreased the observed synergistic action in comparison with ultrapure water, possibly due to the electro-generation of active chlorine that diffuses to the bulk solution. The same behavior was observed with the secondary effluent that contained almost 68 mg/L of chlorides. The efficiency was favored in a neutral medium, while the hybrid process was delayed in alkaline conditions.

Suggested Citation

  • Zacharias Frontistis, 2020. "Sonoelectrochemical Degradation of Propyl Paraben: An Examination of the Synergy in Different Water Matrices," IJERPH, MDPI, vol. 17(8), pages 1-16, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2621-:d:344243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2621/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rita Beltrão Martins & Nuno Jorge & Marco S. Lucas & Anabela Raymundo & Ana I. R. N. A. Barros & José A. Peres, 2022. "Food By-Product Valorization by Using Plant-Based Coagulants Combined with AOPs for Agro-Industrial Wastewater Treatment," IJERPH, MDPI, vol. 19(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2621-:d:344243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.