IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i7p2400-d339933.html
   My bibliography  Save this article

Water Level Decline in a Reservoir: Implications for Water Quality Variation and Pollution Source Identification

Author

Listed:
  • Zixiong Wang

    (China Water Resources Pearl River Planning Surveying & Designing Co, Ltd., Guangzhou 510610, China
    School of Engineering, Anhui Agricultural University, Hefei 230036, China)

  • Tianxiang Wang

    (China Water Resources Pearl River Planning Surveying & Designing Co, Ltd., Guangzhou 510610, China
    Dalian University of Technology, Institution of Water and Environment Research, Dalian 116024, China
    Huaiyin Institute of Technology, Jiangsu Smart Factory Engineering Research Center, Huaian 223003, China)

  • Xiaoli Liu

    (School of Engineering, Anhui Agricultural University, Hefei 230036, China)

  • Suduan Hu

    (Dalian University of Technology, Institution of Water and Environment Research, Dalian 116024, China)

  • Lingxiao Ma

    (Dalian University of Technology, Institution of Water and Environment Research, Dalian 116024, China)

  • Xinguo Sun

    (Huaiyin Institute of Technology, Jiangsu Smart Factory Engineering Research Center, Huaian 223003, China)

Abstract

Continuous water-level decline makes the changes of water quality in reservoirs more complicated. This paper uses trend analyses, wavelet analysis and principal component analysis-multiple linear regression to explore the changes and pollution sources affecting water quality during a period of continuous reservoir water level decline (from 65.37 m to 54.15 m), taking the Biliuhe reservoir as an example. The results showed that the change of water level of Biliuhe reservoir has a significant 13-year periodicity. The unusual water quality changes during the low water level period were as follows: total nitrogen continued to decrease. And iron was lower than its historical level. pH, total phosphorus, and ammonia nitrogen were higher than historical levels and fluctuated seasonally. Permanganate index increased as water level decreased after initial fluctuations. Dissolved oxygen was characterized by high content in winter and relatively low content in summer. The pollutant sources of non-point source pollution (PC1), sediment and groundwater pollution (PC2), atmospheric and production & domestic sewage (PC3), other sources of pollution (PC4) were identified. The main source of DO, pH, TP, TN, NH 4 -N, Fe and COD Mn were respectively PC3 (42.13%), PC1 (47.67%), PC3 (47.62%), PC1 (29.75%), PC2 (47.01%), PC1 (56.97%) and PC2 (50%). It is concluded that the continuous decline of water level has a significant impact on the changes and pollution sources affecting water quality. Detailed experiments focusing on sediment pollution release flux, and biological action will be explored next.

Suggested Citation

  • Zixiong Wang & Tianxiang Wang & Xiaoli Liu & Suduan Hu & Lingxiao Ma & Xinguo Sun, 2020. "Water Level Decline in a Reservoir: Implications for Water Quality Variation and Pollution Source Identification," IJERPH, MDPI, vol. 17(7), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2400-:d:339933
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/7/2400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/7/2400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. GuoLiang Wei & ZhiFeng Yang & BaoShan Cui & Bing Li & He Chen & JunHong Bai & ShiKui Dong, 2009. "Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1763-1780, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoshuai Qin & Jianwei Liu & Shiguo Xu & Ya Sun, 2021. "Pollution Source Apportionment and Water Quality Risk Evaluation of a Drinking Water Reservoir during Flood Seasons," IJERPH, MDPI, vol. 18(4), pages 1-17, February.
    2. Lin, Yu-I & Pan, Shu-Yuan & Chang, Hui-Hsien & Yu, Mei-Siang & Lin, Wei-Lung, 2023. "Will extreme drought impact the reservoir water quality? A 30-year observational study," Agricultural Water Management, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    2. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    3. Pei Zhao & Xiangyu Tang & Jialiang Tang & Chao Wang, 2013. "Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4545-4558, October.
    4. Kaiyan Zhao & Huawu Wu & Wen Chen & Wei Sun & Haixia Zhang & Weili Duan & Wenjun Chen & Bin He, 2020. "Impacts of Landscapes on Water Quality in A Typical Headwater Catchment, Southeastern China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    5. Jingjing Xia & Gaohong Xu & Ping Guo & Hong Peng & Xu Zhang & Yonggui Wang & Wanshun Zhang, 2018. "Tempo-Spatial Analysis of Water Quality in the Three Gorges Reservoir, China, after its 175-m Experimental Impoundment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(9), pages 2937-2954, July.
    6. Guohua Xiong & Guochen Wang & Dongqi Wang & Weilin Yang & Yuanyuan Chen & Zhenlou Chen, 2017. "Spatio-Temporal Distribution of Total Nitrogen and Phosphorus in Dianshan Lake, China: The External Loading and Self-Purification Capability," Sustainability, MDPI, vol. 9(4), pages 1-11, March.
    7. Łukasz Gruss & Mirosław Wiatkowski & Krzysztof Pulikowski & Andrzej Kłos, 2021. "Determination of Changes in the Quality of Surface Water in the River—Reservoir System," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    8. J. Villanueva & P. Coustumer & F. Huneau & M. Motelica-Heino & T.R. Perez & R. Materum & M.V.O. Espaldon & S. Stoll, 2013. "Assessment of Trace Metals during Episodic Events using DGT Passive Sampler: A Proposal for Water Management Enhancement," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(12), pages 4163-4181, September.
    9. Dionissis Latinopoulos & Chrysoula Ntislidou & Maria Lazarina & Vassiliki Papaevangelou & Christos Akratos & Ifigenia Kagalou, 2023. "Macroinvertebrate Community Responses to Multiple Pressures in a Peri-Urban Mediterranean River," Sustainability, MDPI, vol. 15(24), pages 1-18, December.
    10. Angeliki Mentzafou & Momčilo Blagojević & Elias Dimitriou, 2021. "A GIS-MCDA-Based Suitability Analysis for Meeting Targets 6.3 and 6.5 of the Sustainable Development Goals," Sustainability, MDPI, vol. 13(8), pages 1-23, April.
    11. Zhilin Sun & Haolei Zheng & Lixia Sun, 2021. "Analysis on the Characteristics of Bed Materials in the Jinghong Reservoir on the Lancang River," Sustainability, MDPI, vol. 13(12), pages 1-9, June.
    12. Robyn Johnston & Matti Kummu, 2012. "Water Resource Models in the Mekong Basin: A Review," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(2), pages 429-455, January.
    13. Natalia Walczak & Zbigniew Walczak & Jakub Nieć, 2021. "Influence of Debris on Water Intake Gratings in Small Hydroelectric Plants: An Experimental Study on Hydraulic Parameters," Energies, MDPI, vol. 14(11), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2400-:d:339933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.