IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i6p2140-d336045.html
   My bibliography  Save this article

Diarrhea in Under Five Year-old Children in Nepal: A Spatiotemporal Analysis Based on Demographic and Health Survey Data

Author

Listed:
  • Ruixue Li

    (School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
    Ruixue Li and Yingsi Lai contributed equally to this article.)

  • Yingsi Lai

    (School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
    Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510275, China
    Ruixue Li and Yingsi Lai contributed equally to this article.)

  • Chenyang Feng

    (Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510275, China)

  • Rubee Dev

    (Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510275, China)

  • Yijing Wang

    (School of Public Health, Sun Yat-sen University, Guangzhou 510080, China)

  • Yuantao Hao

    (School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
    Sun Yat-sen Global Health Institute, Sun Yat-sen University, Guangzhou 510275, China)

Abstract

Background: Diarrhea in children under five years of age remains a challenge in reducing child mortality in Nepal. Understanding the spatiotemporal patterns and influencing factors of the disease is important for control and intervention. Methods: Data regarding diarrhea prevalence and its potential influencing factors were extracted from the Demographic and Health Surveys in Nepal and other open-access databases. A Bayesian logistic regression model with district-specific spatio-temporal random effects was applied to explore the space and time patterns of diarrhea risk, as well as the relationships between the risk and the potential influencing factors. Results: Both the observed prevalence and the estimated spatiotemporal effects show a decreasing diarrhea risk trend from 2006 to 2016 in most districts of Nepal, with a few exceptions, such as Achham and Rasuwa. The disease risk decreased with mothers’ years of education ( OR 0.93, 95% Bayesian Credible Interval (BCI) 0.87, 0.997). Compared to spring, autumn and winter had lower risks of diarrhea. The risk firstly increased and then decreased with age and children under 12–24 months old were the highest risk group ( OR 1.20, 95% BCI 1.04, 1.38). Boys had higher risk than girls ( OR 1.24, 95% BCI 1.13, 1.39). Even though improved sanitation wasn’t found significant within a 95% BCI, there was 93.2% of chance of it being a protective factor. There were no obvious spatiotemporal clusters among districts and each district tended to have its own spatiotemporal diarrhea prevalence pattern. Conclusions: The important risk factors identified by our Bayesian spatial-temporal modeling provide insights for control and intervention on children diarrhea in Nepal. Special attention should be paid to high risk groups of children and high risk seasons, as well as districts with high risk or increased trend of risk. Effective actions should be implemented to improve sanitation and women’s education level. District-specific control planning is recommended for local governments for effective control of children diarrhea in Nepal.

Suggested Citation

  • Ruixue Li & Yingsi Lai & Chenyang Feng & Rubee Dev & Yijing Wang & Yuantao Hao, 2020. "Diarrhea in Under Five Year-old Children in Nepal: A Spatiotemporal Analysis Based on Demographic and Health Survey Data," IJERPH, MDPI, vol. 17(6), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:6:p:2140-:d:336045
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/6/2140/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/6/2140/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    2. Animut Alebel & Cheru Tesema & Belisty Temesgen & Alemu Gebrie & Pammla Petrucka & Getiye Dejenu Kibret, 2018. "Prevalence and determinants of diarrhea among under-five children in Ethiopia: A systematic review and meta-analysis," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bima Sakti Satria Wibawa & Aussie Tahta Maharani & Gerry Andhikaputra & Marsha Savira Agatha Putri & Aditya Prana Iswara & Amir Sapkota & Ayushi Sharma & Arie Dipareza Syafei & Yu-Chun Wang, 2023. "Effects of Ambient Temperature, Relative Humidity, and Precipitation on Diarrhea Incidence in Surabaya," IJERPH, MDPI, vol. 20(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    2. Leonardo Padilla & Bernado Lagos‐Álvarez & Jorge Mateu & Emilio Porcu, 2020. "Space‐time autoregressive estimation and prediction with missing data based on Kalman filtering," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    3. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    4. Cho, Daegon & Hwang, Youngdeok & Park, Jongwon, 2018. "More buzz, more vibes: Impact of social media on concert distribution," Journal of Economic Behavior & Organization, Elsevier, vol. 156(C), pages 103-113.
    5. Brown, Paul T. & Joshi, Chaitanya & Joe, Stephen & Rue, Håvard, 2021. "A novel method of marginalisation using low discrepancy sequences for integrated nested Laplace approximations," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    6. Andre Python & Andreas Bender & Marta Blangiardo & Janine B. Illian & Ying Lin & Baoli Liu & Tim C.D. Lucas & Siwei Tan & Yingying Wen & Davit Svanidze & Jianwei Yin, 2022. "A downscaling approach to compare COVID‐19 count data from databases aggregated at different spatial scales," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 202-218, January.
    7. Michaela Prokešová & Eva Jensen, 2013. "Asymptotic Palm likelihood theory for stationary point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 387-412, April.
    8. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    9. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    10. David Jiménez-Hernández & Víctor González-Calatayud & Ana Torres-Soto & Asunción Martínez Mayoral & Javier Morales, 2020. "Digital Competence of Future Secondary School Teachers: Differences According to Gender, Age, and Branch of Knowledge," Sustainability, MDPI, vol. 12(22), pages 1-16, November.
    11. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    12. Simon N. Wood & Natalya Pya & Benjamin Säfken, 2016. "Smoothing Parameter and Model Selection for General Smooth Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1548-1563, October.
    13. Yuan Yan & Eva Cantoni & Chris Field & Margaret Treble & Joanna Mills Flemming, 2023. "Spatiotemporal modeling of mature‐at‐length data using a sliding window approach," Environmetrics, John Wiley & Sons, Ltd., vol. 34(2), March.
    14. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    15. Xin Jin, 2021. "Can we imitate the principal investor's behavior to learn option price?," Papers 2105.11376, arXiv.org, revised Jan 2022.
    16. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International Transmission of Macroeconomic Uncertainty in Small Open Economies: An Empirical Approach," Working Papers No 12/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    17. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    18. Soutik Ghosal & Timothy S. Lau & Jeremy Gaskins & Maiying Kong, 2020. "A hierarchical mixed effect hurdle model for spatiotemporal count data and its application to identifying factors impacting health professional shortages," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1121-1144, November.
    19. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    20. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:6:p:2140-:d:336045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.