IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i6p1840-d331678.html
   My bibliography  Save this article

Malaria Case Fatality Rate among Children under Five in Burkina Faso: An Assessment of the Spatiotemporal Trends Following the Implementation of Control Programs

Author

Listed:
  • Mady Ouédraogo

    (Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium
    Institut de Recherche Santé et Sociétés, Faculté de Santé Publique, Université catholique de Louvain, 1200 Brussels, Belgium
    Institut National de la Statistique et de la Démographie [INSD], 01 BP 374 Ouagadougou 01, Burkina Faso)

  • David Tiga Kangoye

    (Centre National de Recherche et de Formation sur le Paludisme [CNRFP], 01 BP 2208 Ouagadougou 101, Burkina Faso)

  • Sékou Samadoulougou

    (Evaluation Platform on Obesity Prevention, Quebec Heart and Lung Institute, Quebec, QC G1V 4G5, Canada
    Centre for Research on Planning and Development (CRAD), Université Laval, Quebec, QC G1V 0A6, Canada)

  • Toussaint Rouamba

    (Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium
    Unité de Recherche Clinique de Nanoro, Institut de Recherche en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, 42 Avenue Kumda-Yonre, Ouagadougou, Kadiogo 11 BP 218 Ouagadougou CMS 11, Burkina Faso)

  • Philippe Donnen

    (Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium
    Centre de Recherche en Politiques et systèmes de santé-Santé internationale, École de Santé Publique Université Libre de Bruxelles, 1070 Brussels, Belgium)

  • Fati Kirakoya-Samadoulougou

    (Centre de Recherche en Epidémiologie, Biostatistiques et Recherche Clinique, Ecole de Santé Publique, Université Libre de Bruxelles, 1070 Brussels, Belgium)

Abstract

Reducing the 2015 level of malaria mortality by 90% by 2030 is a goal set by the World Health Organization (WHO). In Burkina Faso, several malaria control programs proven to be effective were implemented over the last decade. In parallel, the progressive strengthening of the health surveillance system is generating valuable data, which represents a great opportunity for analyzing the trends in malaria burden and assessing the effect of these control programs. Complementary programs were rolled out at different time points and paces, and the present work aims at investigating both the spatial and temporal pattern of malaria case fatality rate (mCFR) by considering the effect of combining specific and unspecific malaria control programs. To this end, data on severe malaria cases and malaria deaths, aggregated at health district level between January 2013 and December 2018, were extracted from the national health data repository (ENDOS-BF). A Bayesian spatiotemporal zero-inflated Poisson model was fitted to quantify the strength of the association of malaria control programs with monthly mCFR trends at health district level. The model was adjusted for contextual variables. We found that monthly mCFR decreased from 2.0 (95% IC 1.9–2.1%) to 0.9 (95% IC 0.8–1.0%) deaths for 100 severe malaria cases in 2013 and 2018, respectively. Health districts with high mCFR were identified in the northern, northwestern and southwestern parts of the country. The availability of malaria rapid diagnosis tests (IRR: 0.54; CrI: 0.47, 0.62) and treatment (IRR: 0.50; CrI: 0.41, 0.61) were significantly associated with a reduction in the mCFR. The risk of dying from malaria was lower in the period after the free healthcare policy compared with the period before (IRR: 0.47; CrI: 0.38, 0.58). Our findings highlighted locations that are most in need of targeted interventions and the necessity to sustain and strengthen the launched health programs to further reduce the malaria deaths in Burkina Faso.

Suggested Citation

  • Mady Ouédraogo & David Tiga Kangoye & Sékou Samadoulougou & Toussaint Rouamba & Philippe Donnen & Fati Kirakoya-Samadoulougou, 2020. "Malaria Case Fatality Rate among Children under Five in Burkina Faso: An Assessment of the Spatiotemporal Trends Following the Implementation of Control Programs," IJERPH, MDPI, vol. 17(6), pages 1-22, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:6:p:1840-:d:331678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/6/1840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/6/1840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    2. Mady Ouédraogo & Toussaint Rouamba & Sékou Samadoulougou & Fati Kirakoya-Samadoulougou, 2020. "Effect of Free Healthcare Policy for Children under Five Years Old on the Incidence of Reported Malaria Cases in Burkina Faso by Bayesian Modelling: “Not only the Ears but also the Head of the Hippopo," IJERPH, MDPI, vol. 17(2), pages 1-23, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katherine Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    2. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    3. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    4. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    5. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    6. Vanessa Santos-Sánchez & Juan Antonio Córdoba-Doña & Javier García-Pérez & Antonio Escolar-Pujolar & Lucia Pozzi & Rebeca Ramis, 2020. "Cancer Mortality and Deprivation in the Proximity of Polluting Industrial Facilities in an Industrial Region of Spain," IJERPH, MDPI, vol. 17(6), pages 1-15, March.
    7. Berti, Patrizia & Dreassi, Emanuela & Rigo, Pietro, 2014. "Compatibility results for conditional distributions," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 190-203.
    8. Louise Choo & Stephen G. Walker, 2008. "A new approach to investigating spatial variations of disease," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 395-405, April.
    9. Young‐Geun Choi & Lawrence P. Hanrahan & Derek Norton & Ying‐Qi Zhao, 2022. "Simultaneous spatial smoothing and outlier detection using penalized regression, with application to childhood obesity surveillance from electronic health records," Biometrics, The International Biometric Society, vol. 78(1), pages 324-336, March.
    10. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    11. Eric C. Tassone & Marie Lynn Miranda & Alan E. Gelfand, 2010. "Disaggregated spatial modelling for areal unit categorical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 59(1), pages 175-190, January.
    12. Junming Li & Xiulan Han & Xiao Li & Jianping Yang & Xuejiao Li, 2018. "Spatiotemporal Patterns of Ground Monitored PM 2.5 Concentrations in China in Recent Years," IJERPH, MDPI, vol. 15(1), pages 1-15, January.
    13. Sanjay Chaudhuri & Debashis Mondal & Teng Yin, 2017. "Hamiltonian Monte Carlo sampling in Bayesian empirical likelihood computation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 293-320, January.
    14. Dolores Catelan & Annibale Biggeri & Corrado Lagazio, 2009. "On the clustering term in ecological analysis: how do different prior specifications affect results?," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(1), pages 49-61, March.
    15. Massimo Bilancia & Giacomo Demarinis, 2014. "Bayesian scanning of spatial disease rates with integrated nested Laplace approximation (INLA)," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(1), pages 71-94, March.
    16. Douglas R. M. Azevedo & Marcos O. Prates & Dipankar Bandyopadhyay, 2021. "MSPOCK: Alleviating Spatial Confounding in Multivariate Disease Mapping Models," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 464-491, September.
    17. Bondo, Kristin J. & Rosenberry, Christopher S. & Stainbrook, David & Walter, W. David, 2024. "Comparing risk of chronic wasting disease occurrence using Bayesian hierarchical spatial models and different surveillance types," Ecological Modelling, Elsevier, vol. 493(C).
    18. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    19. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    20. Jonathan Wakefield & Taylor Okonek & Jon Pedersen, 2020. "Small Area Estimation for Disease Prevalence Mapping," International Statistical Review, International Statistical Institute, vol. 88(2), pages 398-418, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:6:p:1840-:d:331678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.