IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1748-d329795.html
   My bibliography  Save this article

Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge

Author

Listed:
  • Hongwei Zhang

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Jianhui Li

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yingying Zhang

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Kui Huang

    (School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

This study aimed to investigate the effects of temperature on the quality of vermicompost and microbial profiles of dewatered sludge during vermicomposting. To do this, fresh sludge was separately vermicomposted with the earthworm Eisenia fetida under different temperature regimes, specifically, 15 °C, 20 °C, and 25 °C. The results showed that the growth rate of earthworms increased with temperature. Moreover, the lowest organic matter content along with the highest electrical conductivity, ammonia, and nitrate content in sludge were recorded for 25 °C indicating that increasing temperature significantly accelerated decomposition, mineralization, and nitrification. In addition, higher temperature significantly enhanced microbial activity in the first 30 days of vermicomposting, also exhibiting the fastest stabilization at 25 °C. High throughput sequencing results further revealed that the alpha diversity of the bacterial community was enhanced with increasing temperature resulting in distinct bacterial genera in each vermicompost. This study suggests that quality of vermicompost and dominant bacterial community are strongly influenced by the contrasting temperature during vermicomposting of sludge, with the optimal performance at 25 °C.

Suggested Citation

  • Hongwei Zhang & Jianhui Li & Yingying Zhang & Kui Huang, 2020. "Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge," IJERPH, MDPI, vol. 17(5), pages 1-12, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1748-:d:329795
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1748/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1748/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Rajeev Pratap & Singh, Pooja & Araujo, Ademir S.F. & Hakimi Ibrahim, M. & Sulaiman, Othman, 2011. "Management of urban solid waste: Vermicomposting a sustainable option," Resources, Conservation & Recycling, Elsevier, vol. 55(7), pages 719-729.
    2. Naseer Hussain & Shahid A. Abbasi, 2018. "Efficacy of the Vermicomposts of Different Organic Wastes as “Clean” Fertilizers: State-of-the-Art," Sustainability, MDPI, vol. 10(4), pages 1-63, April.
    3. Zexuan Wu & Bangyi Yin & Xu Song & Jiangping Qiu & Linkui Cao & Qi Zhao, 2019. "Effects of Salinity on Earthworms and the Product During Vermicomposting of Kitchen Wastes," IJERPH, MDPI, vol. 16(23), pages 1-12, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyue Huang & Wenjuan He, 2023. "Impacts of Biochar and Vermicompost Addition on Physicochemical Characteristics, Metal Availability, and Microbial Communities in Soil Contaminated with Potentially Toxic Elements," Sustainability, MDPI, vol. 15(1), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Jjagwe & Allan John Komakech & Jeninah Karungi & Arabel Amann & Joshua Wanyama & Jakob Lederer, 2019. "Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    2. Cinny Makkar & Jaswinder Singh & Chander Parkash & Sharanpreet Singh & Adarsh Pal Vig & Salwinder Singh Dhaliwal, 2023. "Vermicompost acts as bio-modulator for plants under stress and non-stress conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2006-2057, March.
    3. Mohee, Romeela & Soobhany, Nuhaa, 2014. "Comparison of heavy metals content in compost against vermicompost of organic solid waste: Past and present," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 206-213.
    4. Bhattacharya, S.S. & Iftikar, W. & Sahariah, B. & Chattopadhyay, G.N., 2012. "Vermicomposting converts fly ash to enrich soil fertility and sustain crop growth in red and lateritic soils," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 100-106.
    5. Dhandapani Banupriya & Tabassum-Abbasi & Tasneem Abbasi & Shahid Abbas Abbasi, 2022. "Rapid, Clean, and Sustainable Bioprocessing of Toxic Weeds into Benign Organic Fertilizer," Agriculture, MDPI, vol. 12(10), pages 1-20, September.
    6. Alise Ose & Una Andersone-Ozola & Gederts Ievinsh, 2021. "Substrate-Dependent Effect of Vermicompost on Yield and Physiological Indices of Container-Grown Dracocephalum moldavica Plants," Agriculture, MDPI, vol. 11(12), pages 1-18, December.
    7. Jun Yang & Kui Huang & Lansheng Peng & Jianhui Li & Aozhan Liu, 2021. "Fate of Functional Bacterial and Eukaryotic Community Regulated by Earthworms during Vermicomposting of Dewatered Sludge, Studies Based on the 16S rDNA and 18S rDNA Sequencing of Active Cells," IJERPH, MDPI, vol. 18(18), pages 1-13, September.
    8. Malhotra, Milan & Aboudi, Kaoutar & Pisharody, Lakshmi & Singh, Ayush & Banu, J. Rajesh & Bhatia, Shashi Kant & Varjani, Sunita & Kumar, Sunil & González-Fernández, Cristina & Kumar, Sumant & Singh, R, 2022. "Biorefinery of anaerobic digestate in a circular bioeconomy: Opportunities, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    9. Masoume Amirkhani & Hilary S. Mayton & Anil N. Netravali & Alan G. Taylor, 2019. "A Seed Coating Delivery System for Bio-Based Biostimulants to Enhance Plant Growth," Sustainability, MDPI, vol. 11(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1748-:d:329795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.