IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v11y2021i12p1231-d696468.html
   My bibliography  Save this article

Substrate-Dependent Effect of Vermicompost on Yield and Physiological Indices of Container-Grown Dracocephalum moldavica Plants

Author

Listed:
  • Alise Ose

    (Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

  • Una Andersone-Ozola

    (Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

  • Gederts Ievinsh

    (Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia)

Abstract

The development of sustainable plant production systems involves a search for different alternatives to chemical fertilizers. The aim of the present study is to compare growth and physiological effects of vermicompost on Dracocephalum moldavica plants in controlled conditions, using two types of commercially available substrates. The intention is to determine whether nondestructively measured photosynthesis-related parameters are useful for monitoring the physiological status of plants. The plants were cultivated in two base substrates without or with the addition of mineral fertilizer, as well as an amendment with vermicompost at a 20% or 30% rate in the conditions of an automated greenhouse. The biomass accumulation for control plants of D. moldavica was identical in peat substrate and commercial garden soil. The average growth increase by mineral fertilizer was 25% for D. moldavica plants grown in peat and 15% for plants grown in soil. Substrate amendment with 20% vermicompost resulted in an 114% average increase in biomass for plants grown in peat and a 98% average increase for plants grown in soil, but for plants at 30% the amendment rate increase was 148% and 68%, for peat and soil, respectively. Consequently, the addition of an identical amount of vermicompost resulted in a poorer growth response of plants in commercial garden soil as a substrate in comparison to peat, but an increase in the amendment rate from 20% to 30% resulted in some growth inhibition for these plants. Chlorophyll concentration was positively affected by the vermicompost amendment in a concentration-dependent manner, but this effect during a cultivation period appeared relatively late. Large differences were found between the three groups of fluorescence-derived parameters, with variable levels of predictability with respect to the differences in plant yield due to the pronounced variation in correlation through time. It is concluded that the incorporation of vermicompost for the cultivation of D. moldavica, even in substrate mixes with relatively high and balanced composition of plant-available nutrients, benefits plant growth, physiological status and biomass yield, but it is necessary to explore interactions between vermicompost and other substrates leading to possible changes in quality-related characteristics of vermicompost in substrate mixes.

Suggested Citation

  • Alise Ose & Una Andersone-Ozola & Gederts Ievinsh, 2021. "Substrate-Dependent Effect of Vermicompost on Yield and Physiological Indices of Container-Grown Dracocephalum moldavica Plants," Agriculture, MDPI, vol. 11(12), pages 1-18, December.
  • Handle: RePEc:gam:jagris:v:11:y:2021:i:12:p:1231-:d:696468
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/11/12/1231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/11/12/1231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grzegorz Pączka & Anna Mazur-Pączka & Mariola Garczyńska & Edmund Hajduk & Joanna Kostecka & Izabela Bartkowska & Kevin R. Butt, 2021. "Use of Vermicompost from Sugar Beet Pulp in Cultivation of Peas ( Pisum sativum L.)," Agriculture, MDPI, vol. 11(10), pages 1-11, September.
    2. Naseer Hussain & Shahid A. Abbasi, 2018. "Efficacy of the Vermicomposts of Different Organic Wastes as “Clean” Fertilizers: State-of-the-Art," Sustainability, MDPI, vol. 10(4), pages 1-63, April.
    3. Randy Carlie Pierre-Louis & Md. Abdul Kader & Nandakumar M Desai & Eleanor H John, 2021. "Potentiality of Vermicomposting in the South Pacific Island Countries: A Review," Agriculture, MDPI, vol. 11(9), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zaiga Landorfa-Svalbe & Māra Vikmane & Gederts Ievinsh, 2022. "Vermicompost Amendment in Soil Affects Growth and Physiology of Zea mays Plants and Decreases Pb Accumulation in Tissues," Agriculture, MDPI, vol. 12(12), pages 1-18, December.
    2. Sandra Ečimović & Mirna Velki & Alma Mikuška & Jelena Bažon & Lucija Sara Kovačić & Suzana Kristek & Jurica Jović & Franjo Nemet & Katarina Perić & Zdenko Lončarić, 2022. "How the Composition of Substrates for Seedling Production Affects Earthworm Behavior," Agriculture, MDPI, vol. 12(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joseph Jjagwe & Allan John Komakech & Jeninah Karungi & Arabel Amann & Joshua Wanyama & Jakob Lederer, 2019. "Assessment of a Cattle Manure Vermicomposting System Using Material Flow Analysis: A Case Study from Uganda," Sustainability, MDPI, vol. 11(19), pages 1-17, September.
    2. Cinny Makkar & Jaswinder Singh & Chander Parkash & Sharanpreet Singh & Adarsh Pal Vig & Salwinder Singh Dhaliwal, 2023. "Vermicompost acts as bio-modulator for plants under stress and non-stress conditions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(3), pages 2006-2057, March.
    3. Dhandapani Banupriya & Tabassum-Abbasi & Tasneem Abbasi & Shahid Abbas Abbasi, 2022. "Rapid, Clean, and Sustainable Bioprocessing of Toxic Weeds into Benign Organic Fertilizer," Agriculture, MDPI, vol. 12(10), pages 1-20, September.
    4. Sandra Ečimović & Mirna Velki & Alma Mikuška & Jelena Bažon & Lucija Sara Kovačić & Suzana Kristek & Jurica Jović & Franjo Nemet & Katarina Perić & Zdenko Lončarić, 2022. "How the Composition of Substrates for Seedling Production Affects Earthworm Behavior," Agriculture, MDPI, vol. 12(12), pages 1-14, December.
    5. Hongwei Zhang & Jianhui Li & Yingying Zhang & Kui Huang, 2020. "Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge," IJERPH, MDPI, vol. 17(5), pages 1-12, March.
    6. Tahsina Sharmin Hoque & Ahmed Khairul Hasan & Md. Arefin Hasan & Nurun Nahar & Debasish Kumer Dey & Shamim Mia & Zakaria M. Solaiman & Md. Abdul Kader, 2022. "Nutrient Release from Vermicompost under Anaerobic Conditions in Two Contrasting Soils of Bangladesh and Its Effect on Wetland Rice Crop," Agriculture, MDPI, vol. 12(3), pages 1-17, March.
    7. Charlie Suruban & Md. Abdul Kader & Zakaria M. Solaiman, 2022. "Influence of Various Composted Organic Amendments and Their Rates of Application on Nitrogen Mineralization and Soil Productivity Using Chinese Cabbage ( Brassica rapa. L. var. Chinensis ) as an Indic," Agriculture, MDPI, vol. 12(2), pages 1-18, January.
    8. Masoume Amirkhani & Hilary S. Mayton & Anil N. Netravali & Alan G. Taylor, 2019. "A Seed Coating Delivery System for Bio-Based Biostimulants to Enhance Plant Growth," Sustainability, MDPI, vol. 11(19), pages 1-16, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:11:y:2021:i:12:p:1231-:d:696468. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.