IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i5p1480-d324912.html
   My bibliography  Save this article

Using the DEMATEL-VIKOR Method in Dam Failure Path Identification

Author

Listed:
  • Yantao Zhu

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    College of Water Conservancy and Hydropower, Hohai University, Nanjing 210098, China)

  • Xinqiang Niu

    (Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China)

  • Chongshi Gu

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    College of Water Conservancy and Hydropower, Hohai University, Nanjing 210098, China)

  • Dashan Yang

    (State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
    National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China
    College of Water Conservancy and Hydropower, Hohai University, Nanjing 210098, China)

  • Qiang Sun

    (CCCC Third Harbor Engineering Co. Ltd., Shanghai 200032, China)

  • E. Fernandez Rodriguez

    (Technological Institute of Merida, Technological Avenue, Merida 97219, Mexico)

Abstract

Dams are important water-resisting structures prone to failure, causing huge economic and environmental losses. Traditionally, a dam failure is identified using the failure mode and effect analysis. This approach analyzes both the dam failure path (the specific effect chain of the failure mode) and the damage degree, by identifying and sorting the severity caused by the dam failure path. However, this analysis can be misleading since the relationship among the failure paths is not considered. To account for this, the DEMATEL method is used to modify the evaluation result of the severity of the failure consequence, caused by the dam failure path. Based on the fuzzy mathematics and VIKOR method, a dam failure path identification method is established, and then the dam failure paths are identified and sorted for a case study: gravity dam located at the junction of Yibin County (China). According to results, the two top initial failure paths were insufficient design of upstream anti-seepage (R6) or defective water-tight screen and corrosion (R7).

Suggested Citation

  • Yantao Zhu & Xinqiang Niu & Chongshi Gu & Dashan Yang & Qiang Sun & E. Fernandez Rodriguez, 2020. "Using the DEMATEL-VIKOR Method in Dam Failure Path Identification," IJERPH, MDPI, vol. 17(5), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1480-:d:324912
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/5/1480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/5/1480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sherong Zhang & Bo Sun & Lei Yan & Chao Wang, 2013. "Risk identification on hydropower project using the IAHP and extension of TOPSIS methods under interval-valued fuzzy environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 359-373, January.
    2. Yuquan Zhang & Yanhe Xu & Yuan Zheng & E. Fernandez-Rodriguez & Aoran Sun & Chunxia Yang & Jue Wang, 2019. "Multiobjective Optimization Design and Experimental Investigation on the Axial Flow Pump with Orthogonal Test Approach," Complexity, Hindawi, vol. 2019, pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hexiang Zhang & Wei Ge & Yadong Zhang & Zongkun Li & Wei Li & Junyu Zhu & Wenqi Wang, 2023. "Risk Management Decision of Reservoir Dams Based on the Improved Life Quality Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(3), pages 1223-1239, February.
    2. Wang, Te & Li, Zongkun & Ge, Wei & Zhang, Hua & Zhang, Yadong & Sun, Heqiang & Jiao, Yutie, 2023. "Risk consequence assessment of dam breach in cascade reservoirs considering risk transmission and superposition," Energy, Elsevier, vol. 265(C).
    3. Xin Yang & Yan Xiang & Guangze Shen & Meng Sun, 2022. "A Combination Model for Displacement Interval Prediction of Concrete Dams Based on Residual Estimation," Sustainability, MDPI, vol. 14(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yucesan, Melih & Kahraman, Gökhan, 2019. "Risk evaluation and prevention in hydropower plant operations: A model based on Pythagorean fuzzy AHP," Energy Policy, Elsevier, vol. 126(C), pages 343-351.
    2. Tseng, Ming-Lang & Wu, Kuo-Jui & Hu, Jiayao & Wang, Chin-Hsin, 2018. "Decision-making model for sustainable supply chain finance under uncertainties," International Journal of Production Economics, Elsevier, vol. 205(C), pages 30-36.
    3. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.
    4. Xu, Ye & Li, Ye & Zheng, Lijun & Cui, Liang & Li, Sha & Li, Wei & Cai, Yanpeng, 2020. "Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China," Energy, Elsevier, vol. 207(C).
    5. Lin, Song-Shun & Shen, Shui-Long & Zhou, Annan & Xu, Ye-Shuang, 2021. "Novel model for risk identification during karst excavation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Crispim, José & Fernandes, Jorge & Rego, Nazaré, 2020. "Customized risk assessment in military shipbuilding," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    7. Weiyao Tang & Zongmin Li & Yan Tu, 2018. "Sustainability Risk Evaluation for Large-Scale Hydropower Projects with Hybrid Uncertainty," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    8. Jun Dong & Huijuan Huo & Dongran Liu & Rong Li, 2017. "Evaluating the Comprehensive Performance of Demand Response for Commercial Customers by Applying Combination Weighting Techniques and Fuzzy VIKOR Approach," Sustainability, MDPI, vol. 9(8), pages 1-32, July.
    9. Sherong Zhang & Yaosheng Tan, 2014. "Risk assessment of earth dam overtopping and its application research," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 717-736, November.
    10. Ryszard Pukala & Nadezda Kirillova & Alexey Dorozhkin, 2021. "Insurance Instruments in Estimating the Cost Energy Assets with Renewable Energy Sources," Energies, MDPI, vol. 14(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:5:p:1480-:d:324912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.