IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i4p1318-d322193.html
   My bibliography  Save this article

Assessing Seasonality Variation with Harmonic Regression: Accommodations for Sharp Peaks

Author

Listed:
  • Kavitha Ramanathan

    (Department of Biostatistics, Christian Medical College, Vellore 632002, India)

  • Mani Thenmozhi

    (Department of Biostatistics, Christian Medical College, Vellore 632002, India)

  • Sebastian George

    (Department of Statistics, St. Thomas College, Palai, Kerala 686575, India)

  • Shalini Anandan

    (Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India)

  • Balaji Veeraraghavan

    (Department of Clinical Microbiology, Christian Medical College, Vellore 632004, India)

  • Elena N. Naumova

    (Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA
    Department of Gastrointestinal Sciences, Christian Medical College, Vellore 632004, India)

  • Lakshmanan Jeyaseelan

    (Department of Biostatistics, Christian Medical College, Vellore 632002, India)

Abstract

The use of the harmonic regression model is well accepted in the epidemiological and biostatistical communities as a standard procedure to examine seasonal patterns in disease occurrence. While these models may provide good fit to periodic patterns with relatively symmetric rises and falls, for some diseases the incidence fluctuates in a more complex manner. We propose a two-step harmonic regression approach to improve the model fit for data exhibiting sharp seasonal peaks. To capture such specific behavior, we first build a basic model and estimate the seasonal peak. At the second step, we apply an extended model using sine and cosine transform functions. These newly proposed functions mimic a quadratic term in the harmonic regression models and thus allow us to better fit the seasonal spikes. We illustrate the proposed method using actual and simulated data and recommend the new approach to assess seasonality in a broad spectrum of diseases manifesting sharp seasonal peaks.

Suggested Citation

  • Kavitha Ramanathan & Mani Thenmozhi & Sebastian George & Shalini Anandan & Balaji Veeraraghavan & Elena N. Naumova & Lakshmanan Jeyaseelan, 2020. "Assessing Seasonality Variation with Harmonic Regression: Accommodations for Sharp Peaks," IJERPH, MDPI, vol. 17(4), pages 1-14, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1318-:d:322193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/4/1318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/4/1318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olga K. Alsova & Valery B. Loktev & Elena N. Naumova, 2019. "Rotavirus Seasonality: An Application of Singular Spectrum Analysis and Polyharmonic Modeling," IJERPH, MDPI, vol. 16(22), pages 1-20, November.
    2. Julia B Wenger & Elena N Naumova, 2010. "Seasonal Synchronization of Influenza in the United States Older Adult Population," PLOS ONE, Public Library of Science, vol. 5(4), pages 1-11, April.
    3. Chui, K.K.H. & Jagai, J.S. & Griffiths, J.K. & Naumova, E.N., 2011. "Hospitalization of the elderly in the United States for nonspecific gastrointestinal diseases: A search for etiological clues," American Journal of Public Health, American Public Health Association, vol. 101(11), pages 2082-2086.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anastasia Marshak & Aishwarya Venkat & Helen Young & Elena N. Naumova, 2021. "How Seasonality of Malnutrition Is Measured and Analyzed," IJERPH, MDPI, vol. 18(4), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yutong Zhang & Ryan B. Simpson & Lauren E. Sallade & Emily Sanchez & Kyle M. Monahan & Elena N. Naumova, 2022. "Evaluating Completeness of Foodborne Outbreak Reporting in the United States, 1998–2019," IJERPH, MDPI, vol. 19(5), pages 1-19, March.
    2. Ryan B. Simpson & Sofia Babool & Maia C. Tarnas & Paulina M. Kaminski & Meghan A. Hartwick & Elena N. Naumova, 2021. "Signatures of Cholera Outbreak during the Yemeni Civil War, 2016–2019," IJERPH, MDPI, vol. 19(1), pages 1-29, December.
    3. Olga K. Alsova & Valery B. Loktev & Elena N. Naumova, 2019. "Rotavirus Seasonality: An Application of Singular Spectrum Analysis and Polyharmonic Modeling," IJERPH, MDPI, vol. 16(22), pages 1-20, November.
    4. Xiaoli Wang & Shuangsheng Wu & C Raina MacIntyre & Hongbin Zhang & Weixian Shi & Xiaomin Peng & Wei Duan & Peng Yang & Yi Zhang & Quanyi Wang, 2015. "Using an Adjusted Serfling Regression Model to Improve the Early Warning at the Arrival of Peak Timing of Influenza in Beijing," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-14, March.
    5. Supachai Nakapan & Nitin Kumar Tripathi & Taravudh Tipdecho & Marc Souris, 2012. "Spatial Diffusion of Influenza Outbreak-Related Climate Factors in Chiang Mai Province, Thailand," IJERPH, MDPI, vol. 9(11), pages 1-19, October.
    6. Jonathon D. Gass & Nichola J. Hill & Lambodhar Damodaran & Elena N. Naumova & Felicia B. Nutter & Jonathan A. Runstadler, 2023. "Ecogeographic Drivers of the Spatial Spread of Highly Pathogenic Avian Influenza Outbreaks in Europe and the United States, 2016–Early 2022," IJERPH, MDPI, vol. 20(11), pages 1-17, June.
    7. Ayaz Hyder & David L Buckeridge & Brian Leung, 2013. "Predictive Validation of an Influenza Spread Model," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-20, June.
    8. Elena N. Naumova & Ryan B. Simpson & Bingjie Zhou & Meghan A. Hartwick, 2022. "Global seasonal and pandemic patterns in influenza: An application of longitudinal study designs," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 82-95, December.
    9. Pavel S. Stashevsky & Irina N. Yakovina & Tania M. Alarcon Falconi & Elena N. Naumova, 2019. "Agglomerative Clustering of Enteric Infections and Weather Parameters to Identify Seasonal Outbreaks in Cold Climates," IJERPH, MDPI, vol. 16(12), pages 1-19, June.
    10. Coleman, Stephen, 2018. "Geographical Distributions and Equilibrium in Social Norm-Related Behavior in the United States," MPRA Paper 96207, University Library of Munich, Germany.
    11. Ninon A. Becquart & Elena N. Naumova & Gitanjali Singh & Kenneth K. H. Chui, 2018. "Cardiovascular Disease Hospitalizations in Louisiana Parishes’ Elderly before, during and after Hurricane Katrina," IJERPH, MDPI, vol. 16(1), pages 1-22, December.
    12. Anastasia Marshak & Aishwarya Venkat & Helen Young & Elena N. Naumova, 2021. "How Seasonality of Malnutrition Is Measured and Analyzed," IJERPH, MDPI, vol. 18(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1318-:d:322193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.