IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i3p1060-d317906.html
   My bibliography  Save this article

Application of Threshold Regression Analysis to Study the Impact of Clean Energy Development on China’s Carbon Productivity

Author

Listed:
  • Dongri Han

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

  • Tuochen Li

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

  • Shaosong Feng

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

  • Ziyi Shi

    (School of Economics and Management, Harbin Engineering University, Harbin 150001, China)

Abstract

Facing the pressures of international carbon emission reduction, the transformation into a low-carbon economy has become a common issue of all countries. The core of developing a low-carbon economy is to increase carbon productivity, which can be measured as the economic benefits of unit carbon emissions. Therefore, using province-level panel data in China from 2009 to 2017, we analyze the carbon productivity level of each region, and empirically investigate the threshold effect of clean energy development on carbon productivity under different technological innovation levels. The results show that the carbon productivity is rising, and China’s economic development pattern has been shifting towards low-carbon and sustainable development. Furthermore, the driving force of clean energy development on carbon productivity is not monotonously increasing (decreasing) but is a “double threshold effect” of technological innovation capability. Finally, based on the research conclusions and realistic requirements of China’s low-carbon economic transformation, this paper proposes improving carbon productivity from the aspects of innovation capability improvement and institutional guarantee.

Suggested Citation

  • Dongri Han & Tuochen Li & Shaosong Feng & Ziyi Shi, 2020. "Application of Threshold Regression Analysis to Study the Impact of Clean Energy Development on China’s Carbon Productivity," IJERPH, MDPI, vol. 17(3), pages 1-16, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:1060-:d:317906
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/3/1060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/3/1060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    2. Tetyana Vasylieva & Oleksii Lyulyov & Yuriy Bilan & Dalia Streimikiene, 2019. "Sustainable Economic Development and Greenhouse Gas Emissions: The Dynamic Impact of Renewable Energy Consumption, GDP, and Corruption," Energies, MDPI, vol. 12(17), pages 1-12, August.
    3. Xiaocang Xu & Xiuquan Huang & Jun Huang & Xin Gao & Linhong Chen, 2019. "Spatial-Temporal Characteristics of Agriculture Green Total Factor Productivity in China, 1998–2016: Based on More Sophisticated Calculations of Carbon Emissions," IJERPH, MDPI, vol. 16(20), pages 1-16, October.
    4. Meng, Bo & Xue, Jinjun & Feng, Kuishuang & Guan, Dabo & Fu, Xue, 2013. "China’s inter-regional spillover of carbon emissions and domestic supply chains," Energy Policy, Elsevier, vol. 61(C), pages 1305-1321.
    5. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    6. Chen, Wenhui & Lei, Yalin, 2018. "The impacts of renewable energy and technological innovation on environment-energy-growth nexus: New evidence from a panel quantile regression," Renewable Energy, Elsevier, vol. 123(C), pages 1-14.
    7. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    8. Salim, Ruhul A. & Shafiei, Sahar, 2014. "Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis," Economic Modelling, Elsevier, vol. 38(C), pages 581-591.
    9. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Multi-regional input-output model for regional energy requirements and CO2 emissions in China," Energy Policy, Elsevier, vol. 35(3), pages 1685-1700, March.
    10. Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "CO2 emissions, nuclear energy, renewable energy and economic growth in the US," Energy Policy, Elsevier, vol. 38(6), pages 2911-2915, June.
    11. Tuochen Li & Dongri Han & Shaosong Feng & Lei Liang, 2019. "Can Industrial Co-Agglomeration between Producer Services and Manufacturing Reduce Carbon Intensity in China?," Sustainability, MDPI, vol. 11(15), pages 1-15, July.
    12. Mun Mun Ahmed & Koji Shimada, 2019. "The Effect of Renewable Energy Consumption on Sustainable Economic Development: Evidence from Emerging and Developing Economies," Energies, MDPI, vol. 12(15), pages 1-15, July.
    13. Jin Hong & Chongyang Zhou & Yanrui Wu & Ruicheng Wang & Dora Marinova, 2019. "Technology Gap, Reverse Technology Spillover and Domestic Innovation Performance in Outward Foreign Direct Investment: Evidence from China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 27(2), pages 1-23, March.
    14. Shafiei, Sahar & Salim, Ruhul A., 2014. "Non-renewable and renewable energy consumption and CO2 emissions in OECD countries: A comparative analysis," Energy Policy, Elsevier, vol. 66(C), pages 547-556.
    15. Baldoni, Edoardo & Coderoni, Silvia & D'Orazio, Marco & Di Giuseppe, Elisa & Esposti, Roberto, 2019. "The role of economic and policy variables in energy-efficient retrofitting assessment. A stochastic Life Cycle Costing methodology," Energy Policy, Elsevier, vol. 129(C), pages 1207-1219.
    16. Dogan, Eyup & Seker, Fahri, 2016. "Determinants of CO2 emissions in the European Union: The role of renewable and non-renewable energy," Renewable Energy, Elsevier, vol. 94(C), pages 429-439.
    17. Yan, Zheming & Du, Keru & Yang, Zhiming & Deng, Min, 2017. "Convergence or divergence? Understanding the global development trend of low-carbon technologies," Energy Policy, Elsevier, vol. 109(C), pages 499-509.
    18. Sikder, Arjita & Inekwe, John & Bhattacharya, Mita, 2019. "Economic output in the era of changing energy-mix for G20 countries: New evidence with trade openness and research and development investment," Applied Energy, Elsevier, vol. 235(C), pages 930-938.
    19. Apergis, Nicholas & Payne, James E. & Menyah, Kojo & Wolde-Rufael, Yemane, 2010. "On the causal dynamics between emissions, nuclear energy, renewable energy, and economic growth," Ecological Economics, Elsevier, vol. 69(11), pages 2255-2260, September.
    20. Qin Fei & Rajah Rasiah & Leow Jia Shen, 2014. "The Clean Energy-Growth Nexus with CO2 Emissions and Technological Innovation in Norway and New Zealand," Energy & Environment, , vol. 25(8), pages 1323-1344, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Qi & Gu, Baihe & Zhang, Haiying & Ji, Qiang, 2023. "Emission reduction mode of China's provincial transportation sector: Based on “Energy+” carbon efficiency evaluation," Energy Policy, Elsevier, vol. 177(C).
    2. Moon-Jung Kim & Yu-Sang Chang & Su-Min Kim, 2021. "Impact of Income, Density, and Population Size on PM 2.5 Pollutions: A Scaling Analysis of 254 Large Cities in Six Developed Countries," IJERPH, MDPI, vol. 18(17), pages 1-30, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    2. Mariola Piłatowska & Andrzej Geise & Aneta Włodarczyk, 2020. "The Effect of Renewable and Nuclear Energy Consumption on Decoupling Economic Growth from CO 2 Emissions in Spain," Energies, MDPI, vol. 13(9), pages 1-18, April.
    3. Balsalobre-Lorente, Daniel & Shahbaz, Muhammad & Roubaud, David & Farhani, Sahbi, 2018. "How economic growth, renewable electricity and natural resources contribute to CO2 emissions?," Energy Policy, Elsevier, vol. 113(C), pages 356-367.
    4. Xiaoxia Shi & Haiyun Liu & Joshua Sunday Riti, 2019. "The role of energy mix and financial development in greenhouse gas (GHG) emissions’ reduction: evidence from ten leading CO2 emitting countries," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 36(3), pages 695-729, October.
    5. Mariola Piłatowska & Andrzej Geise, 2021. "Impact of Clean Energy on CO 2 Emissions and Economic Growth within the Phases of Renewables Diffusion in Selected European Countries," Energies, MDPI, vol. 14(4), pages 1-24, February.
    6. Suyi Kim, 2022. "The Effects of Information and Communication Technology, Economic Growth, Trade Openness, and Renewable Energy on CO 2 Emissions in OECD Countries," Energies, MDPI, vol. 15(7), pages 1-15, March.
    7. Azam, Anam & Rafiq, Muhammad & Shafique, Muhammad & Zhang, Haonan & Yuan, Jiahai, 2021. "Analyzing the effect of natural gas, nuclear energy and renewable energy on GDP and carbon emissions: A multi-variate panel data analysis," Energy, Elsevier, vol. 219(C).
    8. Sharif, Arshian & Mishra, Shekhar & Sinha, Avik & Jiao, Zhilun & Shahbaz, Muhammad & Afshan, Sahar, 2020. "The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach," Renewable Energy, Elsevier, vol. 150(C), pages 670-690.
    9. Deshan Li & Degang Yang, 2016. "Does Non-Fossil Energy Usage Lower CO 2 Emissions? Empirical Evidence from China," Sustainability, MDPI, vol. 8(9), pages 1-11, August.
    10. Destek, Mehmet Akif & Aslan, Alper, 2020. "Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries," Renewable Energy, Elsevier, vol. 151(C), pages 1298-1306.
    11. Suyi Kim, 2020. "The Effects of Foreign Direct Investment, Economic Growth, Industrial Structure, Renewable and Nuclear Energy, and Urbanization on Korean Greenhouse Gas Emissions," Sustainability, MDPI, vol. 12(4), pages 1-14, February.
    12. Zafar, Muhammad Wasif & Zaidi, Syed Anees Haider & Sinha, Avik & Gedikli, Ayfer & Hou, Fujun, 2019. "The role of stock market and banking sector development, and renewable energy consumption in carbon emissions: Insights from G-7 and N-11 countries," Resources Policy, Elsevier, vol. 62(C), pages 427-436.
    13. Dong, Kangyin & Hochman, Gal & Zhang, Yaqing & Sun, Renjin & Li, Hui & Liao, Hua, 2018. "CO2 emissions, economic and population growth, and renewable energy: Empirical evidence across regions," Energy Economics, Elsevier, vol. 75(C), pages 180-192.
    14. Chen, Chaoyi & Pinar, Mehmet & Stengos, Thanasis, 2020. "Renewable energy consumption and economic growth nexus: Evidence from a threshold model," Energy Policy, Elsevier, vol. 139(C).
    15. Vural, Gulfer, 2020. "How do output, trade, renewable energy and non-renewable energy impact carbon emissions in selected Sub-Saharan African Countries?," Resources Policy, Elsevier, vol. 69(C).
    16. Md Samsul Alam & Nicholas Apergis & Sudharshan Reddy Paramati & Jianchun Fang, 2021. "The impacts of R&D investment and stock markets on clean‐energy consumption and CO2 emissions in OECD economies," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 4979-4992, October.
    17. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    18. Adewuyi, Adeolu O. & Awodumi, Olabanji B., 2017. "Biomass energy consumption, economic growth and carbon emissions: Fresh evidence from West Africa using a simultaneous equation model," Energy, Elsevier, vol. 119(C), pages 453-471.
    19. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    20. Murshed, Muntasir, 2019. "Trade Liberalization Policies and Renewable Energy Transition in Low and Middle-Income Countries? An Instrumental Variable Approach," MPRA Paper 97075, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:3:p:1060-:d:317906. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.