IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i23p8771-d451163.html
   My bibliography  Save this article

Greenhouse Gas Emission Efficiencies of World Countries

Author

Listed:
  • Levent Kutlu

    (Department of Economics and Finance, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA)

Abstract

Greenhouse gas emissions have increased rapidly since the industrial revolution. This has led to an unnatural increase in the global surface temperature, and to other changes in our environment. Acknowledging this observation, the United Nations Framework Convention on Climate Change started an international environmental treaty. This treaty was extended by Kyoto protocol, which was adopted on 11 December 1997. Using the stochastic frontier analysis, we analyze the efficiencies of countries in terms of achieving the lowest greenhouse gas emission levels per GDP output in the years between 1990–2015. We find that the average greenhouse gas emission efficiencies of world countries for the time periods 1990–1997, 1998–2007, 2008–2012, and 2013–2015 are 82.40%, 90.37%, 89.54%, and 84.81%, respectively. Moreover, compared to the 1990–1997 period, 92.50%, 79.51%, and 59.84% of the countries improved their greenhouse gas emission efficiencies in the 1998–2007, 2008–2012, and 2013–2015 periods, respectively. Hence, the Kyoto protocol helped in increasing greenhouse emission efficiency. However, this efficiency-boosting effect faded away over time.

Suggested Citation

  • Levent Kutlu, 2020. "Greenhouse Gas Emission Efficiencies of World Countries," IJERPH, MDPI, vol. 17(23), pages 1-11, November.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:23:p:8771-:d:451163
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/23/8771/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/23/8771/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
    2. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    3. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    4. Evangelia Desli & Subhash Ray & Subal Kumbhakar, 2003. "A dynamic stochastic frontier production model with time-varying efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 623-626.
    5. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    6. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    7. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    8. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Slacks-based efficiency measures for modeling environmental performance," Ecological Economics, Elsevier, vol. 60(1), pages 111-118, November.
    9. Wang, Hung-Jen & Ho, Chia-Wen, 2010. "Estimating fixed-effect panel stochastic frontier models by model transformation," Journal of Econometrics, Elsevier, vol. 157(2), pages 286-296, August.
    10. Forsund, Finn R., 2009. "Good Modelling of Bad Outputs: Pollution and Multiple-Output Production," International Review of Environmental and Resource Economics, now publishers, vol. 3(1), pages 1-38, August.
    11. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    12. Herrala, Risto & Goel, Rajeev K., 2012. "Global CO2 efficiency: Country-wise estimates using a stochastic cost frontier," Energy Policy, Elsevier, vol. 45(C), pages 762-770.
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    15. Molinos-Senante, María & Hernández-Sancho, Francesc & Mocholí-Arce, Manuel & Sala-Garrido, Ramón, 2014. "Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions," Resource and Energy Economics, Elsevier, vol. 38(C), pages 125-140.
    16. Huang, Tai-Hsin & Chen, Ying-Hsiu, 2009. "A study on long-run inefficiency levels of a panel dynamic cost frontier under the framework of forward-looking rational expectations," Journal of Banking & Finance, Elsevier, vol. 33(5), pages 842-849, May.
    17. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    18. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    19. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    20. Fernandez, Carmen & Koop, Gary & Steel, Mark F.J., 2005. "Alternative efficiency measures for multiple-output production," Journal of Econometrics, Elsevier, vol. 126(2), pages 411-444, June.
    21. Giulia Caruso & Emiliano Colantonio & Stefano Antonio Gattone, 2020. "Relationships between Renewable Energy Consumption, Social Factors, and Health: A Panel Vector Auto Regression Analysis of a Cluster of 12 EU Countries," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    22. Seung Ahn & Robin Sickles, 2000. "Estimation of long-run inefficiency levels: a dynamic frontier approach," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 461-492.
    23. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    24. Meryem Duygun & Levent Kutlu & Robin C. Sickles, 2016. "Measuring productivity and efficiency: a Kalman filter approach," Journal of Productivity Analysis, Springer, vol. 46(2), pages 155-167, December.
    25. Levent Kutlu & Kien C. Tran & Mike G. Tsionas, 2020. "Unknown latent structure and inefficiency in panel stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 54(1), pages 75-86, August.
    26. Mukherjee, Kankana, 2010. "Measuring energy efficiency in the context of an emerging economy: The case of indian manufacturing," European Journal of Operational Research, Elsevier, vol. 201(3), pages 933-941, March.
    27. Sueyoshi, Toshiyuki & Wang, Derek, 2014. "Sustainability development for supply chain management in U.S. petroleum industry by DEA environmental assessment," Energy Economics, Elsevier, vol. 46(C), pages 360-374.
    28. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    29. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    30. Ali Emrouznejad & Guo-liang Yang & Gholam R. Amin, 2019. "A novel inverse DEA model with application to allocate the CO2 emissions quota to different regions in Chinese manufacturing industries," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(7), pages 1079-1090, July.
    31. Assaf, A. George & Gillen, David & Tsionas, Efthymios G., 2014. "Understanding relative efficiency among airports: A general dynamic model for distinguishing technical and allocative efficiency," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 18-34.
    32. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    33. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Z-John Liu & Minh-Hieu Le & Wen-Min Lu, 2022. "An Innovation Perspective to Explore the Ecology and Social Welfare Efficiencies of Countries," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
    2. Weijiang Liu & Yangyang Li & Tingting Liu & Min Liu & Hai Wei, 2021. "How to Promote Low-Carbon Economic Development? A Comprehensive Assessment of Carbon Tax Policy in China," IJERPH, MDPI, vol. 18(20), pages 1-16, October.
    3. Shihong Zeng & Gen Li & Shaomin Wu & Zhanfeng Dong, 2022. "The Impact of Green Technology Innovation on Carbon Emissions in the Context of Carbon Neutrality in China: Evidence from Spatial Spillover and Nonlinear Effect Analysis," IJERPH, MDPI, vol. 19(2), pages 1-25, January.
    4. Sheng Xu & Jingxue Chen & Demei Wen, 2023. "Research on the Impact of Carbon Trading Policy on the Structural Upgrading of Marine Industry," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    5. Levent Kutlu & Ran Wang, 2021. "Greenhouse Gas Emission Inefficiency Spillover Effects in European Countries," IJERPH, MDPI, vol. 18(9), pages 1-14, April.
    6. Weijiang Liu & Min Liu & Tingting Liu & Yangyang Li & Yizhe Hao, 2022. "Does a Recycling Carbon Tax with Technological Progress in Clean Electricity Drive the Green Economy?," IJERPH, MDPI, vol. 19(3), pages 1-18, February.
    7. Claudiu George Bocean & Cristina Claudia Rotea & Anca Antoaneta Vărzaru & Andra-Nicoleta Ploscaru & Cătălin-Ștefan Rotea, 2021. "A Two-Stage SEM—Artificial Neural Network Analysis of the Rewards Effects on Self Perceived Performance in Healthcare," IJERPH, MDPI, vol. 18(23), pages 1-19, November.
    8. Gao, Kangping & Xu, Xinxin & Jiao, Shengjie, 2022. "Prediction and visualization analysis of drilling energy consumption based on mechanism and data hybrid drive," Energy, Elsevier, vol. 261(PA).
    9. Ramon Sala-Garrido & Manuel Mocholi-Arce & Maria Molinos-Senante & Michail Smyrnakis & Alexandros Maziotis, 2021. "Eco-Efficiency of the English and Welsh Water Companies: A Cross Performance Assessment," IJERPH, MDPI, vol. 18(6), pages 1-17, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levent Kutlu & Shasha Liu & Robin C. Sickles, 2022. "Cost, Revenue, and Profit Function Estimates," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 16, pages 641-679, Springer.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Levent Kutlu & Ran Wang, 2021. "Greenhouse Gas Emission Inefficiency Spillover Effects in European Countries," IJERPH, MDPI, vol. 18(9), pages 1-14, April.
    4. Meryem Duygun & Levent Kutlu & Robin C. Sickles, 2016. "Measuring productivity and efficiency: a Kalman filter approach," Journal of Productivity Analysis, Springer, vol. 46(2), pages 155-167, December.
    5. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    6. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    7. Jie Wu & Xiang Lu & Dong Guo & Liang Liang, 2017. "Slacks-Based Efficiency Measurements with Undesirable Outputs in Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1005-1021, July.
    8. Belotti, Federico & Ilardi, Giuseppe, 2018. "Consistent inference in fixed-effects stochastic frontier models," Journal of Econometrics, Elsevier, vol. 202(2), pages 161-177.
    9. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    10. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    11. Duygun, Meryem & Kutlu, Levent & Sickles, Robin C., 2014. "Measuring Productivity and Efficiency: A Kalman," Working Papers 15-010, Rice University, Department of Economics.
    12. Kutlu, Levent, 2017. "A constrained state space approach for estimating firm efficiency," Economics Letters, Elsevier, vol. 152(C), pages 54-56.
    13. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    14. Vaninsky, Alexander, 2010. "Prospective national and regional environmental performance: Boundary estimations using a combined data envelopment – stochastic frontier analysis approach," Energy, Elsevier, vol. 35(9), pages 3657-3665.
    15. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    16. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    17. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
    18. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    19. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    20. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:23:p:8771-:d:451163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.