IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i21p7779-d434048.html
   My bibliography  Save this article

Method for Quantifying Variation in the Resistance of Electronic Cigarette Coils

Author

Listed:
  • Qutaiba M. Saleh

    (Department of Computer Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA)

  • Edward C. Hensel

    (Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA)

  • Risa J. Robinson

    (Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA)

Abstract

In electronic nicotine delivery systems (ENDS), coil resistance is an important factor in the generation of heat energy used to change e-liquid into vapor. An accurate and unbiased method for testing coil resistance is vital for understanding its effect on emissions and reporting results that are comparable across different types and brands of ENDS and measured in different laboratories. This study proposes a robust, accurate and unbiased method for measuring coil resistance. An apparatus is used which mimics the geometric configuration and assembly of ENDS reservoirs, coils and power control units. The method is demonstrated on two commonly used ENDS devices—the ALTO by Vuse and JUUL. Analysis shows that the proposed method is stable and reliable. The two-wire configuration introduced a positive measurement bias of 0.086 (Ω), which is a significant error for sub-ohm coil designs. The four-wire configuration is far less prone to bias error and is recommended for universal adoption. We observed a significant difference in the coil resistance of 0.593 (Ω) ( p < 0.001) between the two products tested. The mean resistance and standard deviation of the reservoir/coil assemblies was shown to be 1.031 (0.067) (Ω) for ALTO and 1.624 (0.033) (Ω) for JUUL. The variation in coil resistance between products and within products can have significant impacts on aerosol emissions.

Suggested Citation

  • Qutaiba M. Saleh & Edward C. Hensel & Risa J. Robinson, 2020. "Method for Quantifying Variation in the Resistance of Electronic Cigarette Coils," IJERPH, MDPI, vol. 17(21), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:7779-:d:434048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/21/7779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/21/7779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nathan Eddingsaas & Todd Pagano & Cody Cummings & Irfan Rahman & Risa Robinson & Edward Hensel, 2018. "Qualitative Analysis of E-Liquid Emissions as a Function of Flavor Additives Using Two Aerosol Capture Methods," IJERPH, MDPI, vol. 15(2), pages 1-14, February.
    2. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Maud Mercury, 2019. "Impact of Vaping Regimens on Electronic Cigarette Efficiency," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    3. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Hélène Lalo, 2018. "Influence of Coil Power Ranges on the E-Liquid Consumption in Vaping Devices," IJERPH, MDPI, vol. 15(9), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward C. Hensel & Nathan C. Eddingsaas & Qutaiba M. Saleh & Shehan Jayasekera & Samantha Emma Sarles & A. Gary DiFrancesco & Risa J. Robinson, 2022. "Proposed Standard Test Protocols and Outcome Measures for Quantitative Comparison of Emissions from Electronic Nicotine Delivery Systems," IJERPH, MDPI, vol. 19(4), pages 1-19, February.
    2. Qutaiba M. Saleh & Edward C. Hensel & Nathan C. Eddingsaas & Risa J. Robinson, 2021. "Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation," IJERPH, MDPI, vol. 18(8), pages 1-11, April.
    3. Dominic L. Palazzolo & Jordan Caudill & James Baron & Kevin Cooper, 2021. "Fabrication and Validation of an Economical, Programmable, Dual-Channel, Electronic Cigarette Aerosol Generator," IJERPH, MDPI, vol. 18(24), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qutaiba M. Saleh & Edward C. Hensel & Nathan C. Eddingsaas & Risa J. Robinson, 2021. "Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation," IJERPH, MDPI, vol. 18(8), pages 1-11, April.
    2. Dominic L. Palazzolo & Jordan Caudill & James Baron & Kevin Cooper, 2021. "Fabrication and Validation of an Economical, Programmable, Dual-Channel, Electronic Cigarette Aerosol Generator," IJERPH, MDPI, vol. 18(24), pages 1-26, December.
    3. Melinda Pénzes & Márta Bakacs & Zoltán Brys & József Vitrai & Gergely Tóth & Zombor Berezvai & Róbert Urbán, 2021. "Vaping-Related Adverse Events and Perceived Health Improvements: A Cross-Sectional Survey among Daily E-Cigarette Users," IJERPH, MDPI, vol. 18(16), pages 1-15, August.
    4. Walton Sumner & Konstantinos Farsalinos, 2018. "Lessons and Guidance from the Special Issue on Electronic Cigarette Use and Public Health," IJERPH, MDPI, vol. 15(7), pages 1-9, June.
    5. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Hélène Lalo, 2019. "Experimental Method of Emission Generation Calibration Based on Reference Liquids Characterization," IJERPH, MDPI, vol. 16(13), pages 1-17, June.
    6. Wouter F. Visser & Erna J. Z. Krüsemann & Walther N. M. Klerx & Karin Boer & Naomi Weibolt & Reinskje Talhout, 2021. "Improving the Analysis of E-Cigarette Emissions: Detecting Human “Dry Puff” Conditions in a Laboratory as Validated by a Panel of Experienced Vapers," IJERPH, MDPI, vol. 18(21), pages 1-12, November.
    7. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Maud Mercury, 2019. "Impact of Vaping Regimens on Electronic Cigarette Efficiency," IJERPH, MDPI, vol. 16(23), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:21:p:7779-:d:434048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.