IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i13p2262-d243254.html
   My bibliography  Save this article

Experimental Method of Emission Generation Calibration Based on Reference Liquids Characterization

Author

Listed:
  • Sébastien Soulet

    (Laboratoire Français du E-Liquide, 218 avenue du Haut-Levêque, 33600 Pessac, France
    Université de Bordeaux, CNRS, I2M Bordeaux, Site ENSAM, Esplanade des Arts et Métiers, F-33405 Talence CEDEX, France)

  • Marie Duquesne

    (Bordeaux INP, CNRS, I2M Bordeaux, ENSCBP, 16 avenue Pey Berland, 33607 Pessac CEDEX, France)

  • Jean Toutain

    (Bordeaux INP, CNRS, I2M Bordeaux, ENSCBP, 16 avenue Pey Berland, 33607 Pessac CEDEX, France)

  • Charly Pairaud

    (Laboratoire Français du E-Liquide, 218 avenue du Haut-Levêque, 33600 Pessac, France)

  • Hélène Lalo

    (Laboratoire Français du E-Liquide, 218 avenue du Haut-Levêque, 33600 Pessac, France)

Abstract

This work focuses on an experimental study of the influence of e-liquid composition on the mass of vaporized e-liquid after standardized emission generation using a U-SAV (Universal System for Analysis of Vaping) vaping machine. All the experiments were based on the use of a Cubis 1Ω clearomiser and on the standard protocol for electronic cigarettes emission generation. Currently, there is no standardized method available to calibrate the emission generations of electronic cigarettes. Since the e-liquid compositions are not always known, we propose a simple, practical, effective, and fast method of emission generation calibration. Therefore, this paper examines a major issue in this new and constantly evolving field, allowing the validation of the emission generation results. To our knowledge, this method is a novelty in our discipline and could be easily developed in laboratories. Pure propylene-glycol, glycerol, ethanol, and water and their mixtures (20 e-liquids) were tested as reference materials, allowing an e-liquids benchmarking and the characterization of 800 commercial e-liquids (with known and unknown compositions) at a fixed power and for one inhalation profile (3 s puff duration and 55 mL of puff volume). The influence of ethanol and/or water addition in the e-liquid was characterized.

Suggested Citation

  • Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Hélène Lalo, 2019. "Experimental Method of Emission Generation Calibration Based on Reference Liquids Characterization," IJERPH, MDPI, vol. 16(13), pages 1-17, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2262-:d:243254
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/13/2262/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/13/2262/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sébastien Soulet & Charly Pairaud & Hélène Lalo, 2017. "A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions," IJERPH, MDPI, vol. 14(10), pages 1-12, October.
    2. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Hélène Lalo, 2018. "Influence of Coil Power Ranges on the E-Liquid Consumption in Vaping Devices," IJERPH, MDPI, vol. 15(9), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Maud Mercury, 2019. "Impact of Vaping Regimens on Electronic Cigarette Efficiency," IJERPH, MDPI, vol. 16(23), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominic L. Palazzolo & Jordan Caudill & James Baron & Kevin Cooper, 2021. "Fabrication and Validation of an Economical, Programmable, Dual-Channel, Electronic Cigarette Aerosol Generator," IJERPH, MDPI, vol. 18(24), pages 1-26, December.
    2. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Maud Mercury, 2019. "Impact of Vaping Regimens on Electronic Cigarette Efficiency," IJERPH, MDPI, vol. 16(23), pages 1-15, November.
    3. Walton Sumner & Konstantinos Farsalinos, 2018. "Lessons and Guidance from the Special Issue on Electronic Cigarette Use and Public Health," IJERPH, MDPI, vol. 15(7), pages 1-9, June.
    4. Qutaiba M. Saleh & Edward C. Hensel & Risa J. Robinson, 2020. "Method for Quantifying Variation in the Resistance of Electronic Cigarette Coils," IJERPH, MDPI, vol. 17(21), pages 1-16, October.
    5. Qutaiba M. Saleh & Edward C. Hensel & Nathan C. Eddingsaas & Risa J. Robinson, 2021. "Effects of Manufacturing Variation in Electronic Cigarette Coil Resistance and Initial Pod Mass on Coil Lifetime and Aerosol Generation," IJERPH, MDPI, vol. 18(8), pages 1-11, April.
    6. Sébastien Soulet & Marie Duquesne & Jean Toutain & Charly Pairaud & Hélène Lalo, 2018. "Influence of Coil Power Ranges on the E-Liquid Consumption in Vaping Devices," IJERPH, MDPI, vol. 15(9), pages 1-14, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:13:p:2262-:d:243254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.