IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i11p3854-d364481.html
   My bibliography  Save this article

Nontuberculous Mycobacterial Disease and Molybdenum in Colorado Watersheds

Author

Listed:
  • Ettie M. Lipner

    (National Jewish Health, Denver, CO 80206, USA
    Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA)

  • Joshua French

    (Department of Mathematical and Statistical Sciences, University of Colorado Denver, Denver, CO 80204, USA)

  • Carleton R. Bern

    (U.S. Geological Survey, Colorado Water Science Center, Denver, CO 80225, USA)

  • Katherine Walton-Day

    (U.S. Geological Survey, Colorado Water Science Center, Denver, CO 80225, USA)

  • David Knox

    (Department of Computer Science, University of Colorado-Boulder, Boulder, CO 80309, USA)

  • Michael Strong

    (National Jewish Health, Denver, CO 80206, USA)

  • D. Rebecca Prevots

    (National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20814, USA
    D. Rebecca Prevots and James L. Crooks are co-senior authors.)

  • James L. Crooks

    (National Jewish Health, Denver, CO 80206, USA
    Department of Epidemiology, Colorado School of Public Health, Aurora, CO 80045, USA
    D. Rebecca Prevots and James L. Crooks are co-senior authors.)

Abstract

Nontuberculous mycobacteria (NTM) are environmental bacteria that may cause chronic lung disease. Environmental factors that favor NTM growth likely increase the risk of NTM exposure within specific environments. We aimed to identify water-quality constituents (Al, As, Cd, Ca, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Na, Zn, and pH) associated with NTM disease across Colorado watersheds. We conducted a geospatial, ecological study, associating data from patients with NTM disease treated at National Jewish Health and water-quality data from the Water Quality Portal. Water-quality constituents associated with disease risk were identified using generalized linear models with Poisson-distributed discrete responses. We observed a highly robust association between molybdenum (Mo) in the source water and disease risk. For every 1- unit increase in the log concentration of molybdenum in the source water, disease risk increased by 17.0%. We also observed a statistically significant association between calcium (Ca) in the source water and disease risk. The risk of NTM varied by watershed and was associated with watershed-specific water-quality constituents. These findings may inform mitigation strategies to decrease the overall risk of exposure.

Suggested Citation

  • Ettie M. Lipner & Joshua French & Carleton R. Bern & Katherine Walton-Day & David Knox & Michael Strong & D. Rebecca Prevots & James L. Crooks, 2020. "Nontuberculous Mycobacterial Disease and Molybdenum in Colorado Watersheds," IJERPH, MDPI, vol. 17(11), pages 1-15, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:3854-:d:364481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/11/3854/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/11/3854/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Josse, Julie & Husson, François, 2016. "missMDA: A Package for Handling Missing Values in Multivariate Data Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i01).
    2. Lê, Sébastien & Josse, Julie & Husson, François, 2008. "FactoMineR: An R Package for Multivariate Analysis," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Kluge & Sarah Lappöhn & Kerstin Plank, 2023. "Predictors of TFP growth in European countries," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 50(1), pages 109-140, February.
    2. Nicholas Tierney & Dianne Cook, 2018. "Expanding tidy data principles to facilitate missing data exploration, visualization and assessment of imputations," Monash Econometrics and Business Statistics Working Papers 14/18, Monash University, Department of Econometrics and Business Statistics.
    3. Pépin, Antonin & Morel, Kevin & van der Werf, Hayo M.G., 2021. "Conventionalised vs. agroecological practices on organic vegetable farms: Investigating the influence of farm structure in a bifurcation perspective," Agricultural Systems, Elsevier, vol. 190(C).
    4. Houssame Eddine Balouli & Lazhar Chine, 2018. "Using Principal Component Analysis and Cluster Analysis to determine agricultural capacities of Algeria," Post-Print hal-03455876, HAL.
    5. Michael Greenacre & Patrick J. F Groenen & Trevor Hastie & Alfonso Iodice d’Enza & Angelos Markos & Elena Tuzhilina, 2023. "Principal component analysis," Economics Working Papers 1856, Department of Economics and Business, Universitat Pompeu Fabra.
    6. Elisabeth Ilinca & Ancuta Fedorca & Iulia Baciu & Mihai Fedorca & Georgeta Ionescu, 2022. "The Road ahead on Implementing Non-Invasive Genetic Monitoring of Multispecies in the Carpathians," Land, MDPI, vol. 11(12), pages 1-28, December.
    7. Koning, Stephanie M., 2019. "Displacement contexts and violent landscapes: How conflict and displacement structure women's lives and ongoing threats at the Thai-Myanmar border," Social Science & Medicine, Elsevier, vol. 240(C).
    8. Karin Kauer & Sandra Pärnpuu & Liina Talgre & Viacheslav Eremeev & Anne Luik, 2021. "Soil Particulate and Mineral-Associated Organic Matter Increases in Organic Farming under Cover Cropping and Manure Addition," Agriculture, MDPI, vol. 11(9), pages 1-23, September.
    9. Surun, Clément & Drechsler, Martin, 2018. "Effectiveness of Tradable Permits for the Conservation of Metacommunities With Two Competing Species," Ecological Economics, Elsevier, vol. 147(C), pages 189-196.
    10. Navarro-Miró, D. & Iocola, I. & Persiani, A. & Blanco-Moreno, J.M. & Kristensen, H. Lakkenborg & Hefner, M. & Tamm, K. & Bender, I. & Védie, H. & Willekens, K. & Diacono, M. & Montemurro, F. & Sans, F, 2019. "Energy flows in European organic vegetable systems: Effects of the introduction and management of agroecological service crops," Energy, Elsevier, vol. 188(C).
    11. Alexander Platzer & Thomas Nussbaumer & Thomas Karonitsch & Josef S Smolen & Daniel Aletaha, 2019. "Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-23, July.
    12. Baccar, Mariem & Raynal, Hélène & Sekhar, Muddu & Bergez, Jacques-Eric & Willaume, Magali & Casel, Pierre & Giriraj, P. & Murthy, Sanjeeva & Ruiz, Laurent, 2023. "Dynamics of crop category choices reveal strategies and tactics used by smallholder farmers in India to cope with unreliable water availability," Agricultural Systems, Elsevier, vol. 211(C).
    13. Aditi Sahu & Kivanc Kose & Lukas Kraehenbuehl & Candice Byers & Aliya Holland & Teguru Tembo & Anthony Santella & Anabel Alfonso & Madison Li & Miguel Cordova & Melissa Gill & Christi Fox & Salvador G, 2022. "In vivo tumor immune microenvironment phenotypes correlate with inflammation and vasculature to predict immunotherapy response," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Joy R. Petway & Yu-Pin Lin & Rainer F. Wunderlich, 2019. "Analyzing Opinions on Sustainable Agriculture: Toward Increasing Farmer Knowledge of Organic Practices in Taiwan-Yuanli Township," Sustainability, MDPI, vol. 11(14), pages 1-27, July.
    15. Pabitra Joshi & Guriqbal Singh Dhillon & Yaotian Gao & Amandeep Kaur & Justin Wheeler & Jianli Chen, 2024. "An Optimal Model to Improve Genomic Prediction for Protein Content and Test Weight in a Diverse Spring Wheat Panel," Agriculture, MDPI, vol. 14(3), pages 1-16, February.
    16. Nichiforel, Liviu & Keary, Kevin & Deuffic, Philippe & Weiss, Gerhard & Thorsen, Bo Jellesmark & Winkel, Georg & Avdibegović, Mersudin & Dobšinská, Zuzana & Feliciano, Diana & Gatto, Paola & Gorriz Mi, 2018. "How private are Europe’s private forests? A comparative property rights analysis," Land Use Policy, Elsevier, vol. 76(C), pages 535-552.
    17. Cahen-Fourot, Louison & Campiglio, Emanuele & Dawkins, Elena & Godin, Antoine & Kemp-Benedict, Eric, 2020. "Looking for the Inverted Pyramid: An Application Using Input-Output Networks," Ecological Economics, Elsevier, vol. 169(C).
    18. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    19. Cholez, Celia & Pauly, Olivier & Mahdad, Maral & Mehrabi, Sepide & Giagnocavo, Cynthia & Bijman, Jos, 2023. "Heterogeneity of inter-organizational collaborations in agrifood chain sustainability-oriented innovations," Agricultural Systems, Elsevier, vol. 212(C).
    20. Loc, Ho Huu & Park, Edward & Thu, Tran Ngoc & Diep, Nguyen Thi Hong & Can, Nguyen Trong, 2021. "An enhanced analytical framework of participatory GIS for ecosystem services assessment applied to a Ramsar wetland site in the Vietnam Mekong Delta," Ecosystem Services, Elsevier, vol. 48(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:11:p:3854-:d:364481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.