IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i10p3663-d361957.html
   My bibliography  Save this article

An Exploration of a Synthetic Construction Land Use Quality Evaluation Based on Economic-Social-Ecological Coupling Perspective: A Case Study in Major Chinese Cities

Author

Listed:
  • Xufeng Cui

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Sheng Yang

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Guanghong Zhang

    (School of Business Administration, Zhongnan University of Economics and Law, Wuhan 430073, China)

  • Bin Liang

    (Development and Rural Innovation, Wageningen University and Research, Wageningen 6709PH, The Netherlands)

  • Fei Li

    (School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China)

Abstract

Recently, with the rapid increase of urban population and industrial agglomeration, the price of construction land has increased, and construction land has become increasingly scarce. Therefore, how to improve the construction land use quality (CLUQ) becomes more and more important. The purpose of the study is to evaluate CLUQ in China’s major cities and to analyze the dominant obstacle factors for quality improvement in order to provide policy advice for construction land management. This study adapts the data from 2014 to 2016 and constructs the evaluation framework of CLUQ involving economic quality, social quality, and ecological quality of construction land to evaluate and analyze CLUQ with the synthetic evaluation model, coupling evaluation model, and obstacle diagnosis model (ECO model). This study shows that the synthetic CLUQ of 23 cities out of 36 major cities in China shows a general increasing state. The economic quality of 26 cities out of 36 major cities in China has increased, while the social and ecological quality of 20 out of 36 major cities in China has decreased. In terms of spatial characteristics, the synthetic quality in the east and southwest of China is relatively high; in terms of spatial trend, the synthetic quality in longitude increases from west to east, and it shows an inverted U-shaped state in latitude. Moreover, economic development is the main obstacle factor for the improvement of CLUQ in Hohhot, Lanzhou, Urumqi, and Changchun. Social development results in the CLUQ lagging in Beijing, Guiyang, Shanghai, Xining, and Chongqing. Ecological development has a negative impact in that of Harbin, Qingdao, and Wuhan. Furthermore. The improvement of CLUQ lies in the coupling and coordinated development of economic, social, and ecological quality. For those with a low coupling degree, the targeted suggestions are given for different types based on city’s quadrant distribution.

Suggested Citation

  • Xufeng Cui & Sheng Yang & Guanghong Zhang & Bin Liang & Fei Li, 2020. "An Exploration of a Synthetic Construction Land Use Quality Evaluation Based on Economic-Social-Ecological Coupling Perspective: A Case Study in Major Chinese Cities," IJERPH, MDPI, vol. 17(10), pages 1-16, May.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3663-:d:361957
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/10/3663/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/10/3663/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xie, Hualin & Chen, Qianru & Lu, Fucai & Wu, Qing & Wang, Wei, 2018. "Spatial-temporal disparities, saving potential and influential factors of industrial land use efficiency: A case study in urban agglomeration in the middle reaches of the Yangtze River," Land Use Policy, Elsevier, vol. 75(C), pages 518-529.
    2. Zhu, Xinhua & Li, Yan & Zhang, Peifeng & Wei, Yigang & Zheng, Xuyang & Xie, Lingling, 2019. "Temporal–spatial characteristics of urban land use efficiency of China’s 35mega cities based on DEA: Decomposing technology and scale efficiency," Land Use Policy, Elsevier, vol. 88(C).
    3. Kytzia, Susanne & Walz, Ariane & Wegmann, Mattia, 2011. "How can tourism use land more efficiently? A model-based approach to land-use efficiency for tourist destinations," Tourism Management, Elsevier, vol. 32(3), pages 629-640.
    4. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Land use efficiency and influencing factors of urban agglomerations in China," Land Use Policy, Elsevier, vol. 88(C).
    5. Zhang, Ling & Zhang, Lei & Xu, Yan & Zhou, Peng & Yeh, Chung-Hsing, 2020. "Evaluating urban land use efficiency with interacting criteria: An empirical study of cities in Jiangsu China," Land Use Policy, Elsevier, vol. 90(C).
    6. Chenxi Li & Xing Gao & Bao-Jie He & Jingyao Wu & Kening Wu, 2019. "Coupling Coordination Relationships between Urban-industrial Land Use Efficiency and Accessibility of Highway Networks: Evidence from Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    7. Lu, Xinhai & Chen, Danling & Kuang, Bing & Zhang, Chaozheng & Cheng, Chen, 2020. "Is high-tech zone a policy trap or a growth drive? Insights from the perspective of urban land use efficiency," Land Use Policy, Elsevier, vol. 95(C).
    8. Xiaodong Yang & Yongxiang Wu & Hang Dang, 2017. "Urban Land Use Efficiency and Coordination in China," Sustainability, MDPI, vol. 9(3), pages 1-12, March.
    9. He, Sanwei & Yu, Shan & Li, Guangdong & Zhang, Junfeng, 2020. "Exploring the influence of urban form on land-use efficiency from a spatiotemporal heterogeneity perspective: Evidence from 336 Chinese cities," Land Use Policy, Elsevier, vol. 95(C).
    10. Sun, Yifan & Ma, Anbing & Su, Haorui & Su, Shiliang & Chen, Fei & Wang, Wen & Weng, Min, 2020. "Does the establishment of development zones really improve industrial land use efficiency? Implications for China’s high-quality development policy," Land Use Policy, Elsevier, vol. 90(C).
    11. Kuang, Bing & Lu, Xinhai & Zhou, Min & Chen, Danling, 2020. "Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    12. Tingting Yang & Xuefeng Guan & Yuehui Qian & Weiran Xing & Huayi Wu, 2019. "Efficiency Evaluation of Urban Road Transport and Land Use in Hunan Province of China Based on Hybrid Data Envelopment Analysis (DEA) Models," Sustainability, MDPI, vol. 11(14), pages 1-18, July.
    13. Junfang Yuan & Zhengfu Bian & Qingwu Yan & Yuanqing Pan, 2019. "Spatio-Temporal Distributions of the Land Use Efficiency Coupling Coordination Degree in Mining Cities of Western China," Sustainability, MDPI, vol. 11(19), pages 1-19, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng Zhan & Mingjing Guo & Jinhua Cheng & Hongxia Peng, 2022. "Evaluation of Resources and Environment Carrying Capacity Based on Support Pressure Coupling Mechanism: A Case Study of the Yangtze River Economic Belt," IJERPH, MDPI, vol. 20(1), pages 1-21, December.
    2. Tonghui Yu & Xuan Huang & Shanshan Jia & Xufeng Cui, 2023. "Unveiling the Spatio-Temporal Evolution and Key Drivers for Urban Green High-Quality Development: A Comparative Analysis of China’s Five Major Urban Agglomerations," Land, MDPI, vol. 12(11), pages 1-25, October.
    3. Leiru Wei & Xiaojie Zhao & Jianxin Lu, 2022. "Measuring the Level of Urban–Rural Integration Development and Analyzing the Spatial Pattern Based on the New Development Concept: Evidence from Cities in the Yellow River Basin," IJERPH, MDPI, vol. 20(1), pages 1-26, December.
    4. Xinyu Wang & Xinzhi Yao & Huamei Shao & Tian Bai & Yaqiong Xu & Guohang Tian & Albert Fekete & László Kollányi, 2023. "Land Use Quality Assessment and Exploration of the Driving Forces Based on Location: A Case Study in Luohe City, China," Land, MDPI, vol. 12(1), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin Ma & Minrui Zheng & Xinqi Zheng & Yi Huang & Feng Xu & Xiaoli Wang & Jiantao Liu & Yongqiang Lv & Wenchao Liu, 2023. "Land Use Efficiency Assessment under Sustainable Development Goals: A Systematic Review," Land, MDPI, vol. 12(4), pages 1-21, April.
    2. Mengchao Yao & Yihua Zhang, 2021. "Evaluation and Optimization of Urban Land-Use Efficiency: A Case Study in Sichuan Province of China," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    3. Xinhai Lu & Yifeng Tang & Shangan Ke, 2021. "Does the Construction and Operation of High-Speed Rail Improve Urban Land Use Efficiency? Evidence from China," Land, MDPI, vol. 10(3), pages 1-15, March.
    4. Aiping Wang & Weifen Lin & Bei Liu & Hui Wang & Hong Xu, 2021. "Does Smart City Construction Improve the Green Utilization Efficiency of Urban Land?," Land, MDPI, vol. 10(6), pages 1-18, June.
    5. Huifang Cheng & Ting Yu & Hao Zhang & Kaifeng Duan & Jianing Zhu, 2022. "Dynamic Estimation of Urban Land Use Efficiency and Sustainability Analysis in China," Sustainability, MDPI, vol. 14(21), pages 1-16, October.
    6. Lisha Pan & Hangang Hu & Xin Jing & Yang Chen & Guan Li & Zhongguo Xu & Yuefei Zhuo & Xueqi Wang, 2022. "The Impacts of Regional Cooperation on Urban Land-Use Efficiency: Evidence from the Yangtze River Delta, China," Land, MDPI, vol. 11(6), pages 1-16, June.
    7. Zhang, Han & Zheng, Jinhui & Hunjra, Ahmed Imran & Zhao, Shikuan & Bouri, Elie, 2024. "How does urban land use efficiency improve resource and environment carrying capacity?," Socio-Economic Planning Sciences, Elsevier, vol. 91(C).
    8. Jingyi Wang & Kaisi Sun & Jiupai Ni & Deti Xie, 2020. "Evaluation and Factor Analysis of the Intensive Use of Urban Land Based on Technical Efficiency Measurement—A Case Study of 38 Districts and Counties in Chongqing, China," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    9. Yanxi Lei & Zuoji Dong & Jichang Dong & Zhi Dong, 2023. "Multidimensional Evaluation of Urban Land-Use Efficiency and Innovation Capability Analysis: A Case Study in the Pearl River Delta Region, China," Sustainability, MDPI, vol. 15(8), pages 1-20, April.
    10. Rongtian Zhang & Jianfei Lu, 2022. "Spatial–Temporal Pattern and Convergence Characteristics of Provincial Urban Land Use Efficiency under Environmental Constraints in China," IJERPH, MDPI, vol. 19(17), pages 1-15, August.
    11. Han Chen & Chunyu Meng & Qilin Cao, 2022. "Measurement and Influencing Factors of Low Carbon Urban Land Use Efficiency—Based on Non-Radial Directional Distance Function," Land, MDPI, vol. 11(7), pages 1-16, July.
    12. Houtian Tang & Yuanlai Wu & Jinxiu Chen & Liuxin Deng & Minjie Zeng, 2022. "How Does Change in Rural Residential Land Affect Cultivated Land Use Efficiency? An Empirical Study Based on 42 Cities in the Middle Reaches of the Yangtze River," Land, MDPI, vol. 11(12), pages 1-20, December.
    13. Yue Zhou & Yi Chen & Yi Hu, 2021. "Assessing Efficiency of Urban Land Utilisation under Environmental Constraints in Yangtze River Delta, China," IJERPH, MDPI, vol. 18(23), pages 1-18, November.
    14. Koroso, Nesru H. & Zevenbergen, Jaap A. & Lengoiboni, Monica, 2020. "Urban land use efficiency in Ethiopia: An assessment of urban land use sustainability in Addis Ababa," Land Use Policy, Elsevier, vol. 99(C).
    15. Yedong Chen & Jiang Chang & Zixuan Li & Li Ming & Cankun Li & Cheng Li, 2023. "Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China," Land, MDPI, vol. 12(9), pages 1-23, August.
    16. Sijia Li & Meichen Fu & Yi Tian & Yuqing Xiong & Cankun Wei, 2022. "Relationship between Urban Land Use Efficiency and Economic Development Level in the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(7), pages 1-18, June.
    17. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.
    18. Fei, Rilong & Lin, Ziyi & Chunga, Joseph, 2021. "How land transfer affects agricultural land use efficiency: Evidence from China’s agricultural sector," Land Use Policy, Elsevier, vol. 103(C).
    19. Xuanming Ji & Kun Wang & Tao Ji & Yihua Zhang & Kun Wang, 2020. "Coupling Analysis of Urban Land Use Benefits: A Case Study of Xiamen City," Land, MDPI, vol. 9(5), pages 1-20, May.
    20. Mengcheng Wang & Nana Lin & Youming Dong & Yifeng Tang, 2023. "How Does New Energy Demonstration City Policy Promote Urban Land Use Efficiency in China? The Mediating Effect of Industrial Structure," Land, MDPI, vol. 12(5), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:10:p:3663-:d:361957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.