IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2019i1p105-d300830.html
   My bibliography  Save this article

Environmental Footprints of High-Speed Railway Construction in China: A Case Study of the Beijing–Tianjin Line

Author

Listed:
  • Jianyi Lin

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Shihui Cheng

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Huimei Li

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Dewei Yang

    (School of Geographical Sciences, Southwest University, Chongqing 400715, China)

  • Tao Lin

    (Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

Abstract

The environmental footprints of China’s high-speed railway (HSR) have attracted much attention nationally and internationally. Although there is some research focusing on CO 2 emissions, a comprehensive environmental impacts assessment of HSR construction is still lacking. In this study, the emissions of the Beijing–Tianjin intercity HSR line was calculated using a hybrid input–output life cycle assessment method to quantify the environmental impacts of HSR throughout its construction. The environmental footprints during the construction stage were analyzed in terms of different subsystems and sectors. The results showed that bridges contribute the largest environmental footprints at approximately 60%, followed by rail and electric multiple unit (EMU) systems. The top three sectors that contribute to pollutant emissions are the metal smelting and rolling industry, transport equipment manufacturing, and non-metallic mineral production. CO 2 and NO x are the major pollutants directly emitted by site equipment operation. More chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), and petroleum are emitted in EMU production than in rail construction, while NH 3 -N is emitted more in rails instead. Cd, Pb, As, and Hg are the significant pollutants in the metal smelting and rolling industry, whereas Cr, Cu, and Zn are the main heavy metal emissions in the transport equipment manufacturing sector. Heavy metals are the main types of environmental footprints in bridges, stations, and electric systems. Water pollutants are the main environmental impacts for rail and EMU systems, and the emissions of air pollutants are significant in subgrades. The production efficiency of upstream materials, desulfurization and denitration in fossil combustion, and the length of the bridge construction should be considered for an HSR under construction, in order to become environmentally friendly and sustainable.

Suggested Citation

  • Jianyi Lin & Shihui Cheng & Huimei Li & Dewei Yang & Tao Lin, 2019. "Environmental Footprints of High-Speed Railway Construction in China: A Case Study of the Beijing–Tianjin Line," IJERPH, MDPI, vol. 17(1), pages 1-14, December.
  • Handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:105-:d:300830
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/1/105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/1/105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bueno, Gorka & Hoyos, David & Capellán-Pérez, Iñigo, 2017. "Evaluating the environmental performance of the high speed rail project in the Basque Country, Spain," Research in Transportation Economics, Elsevier, vol. 62(C), pages 44-56.
    2. Xu, Wangtu (Ato) & Zhou, Jiangping & Qiu, Guo, 2018. "China's high-speed rail network construction and planning over time: a network analysis," Journal of Transport Geography, Elsevier, vol. 70(C), pages 40-54.
    3. Chang, Yuan & Lei, Shuhua & Teng, Jianjian & Zhang, Jiangxue & Zhang, Lixiao & Xu, Xiao, 2019. "The energy use and environmental emissions of high-speed rail transportation in China: A bottom-up modeling," Energy, Elsevier, vol. 182(C), pages 1193-1201.
    4. Liangliang Jia & Jie Chu & Li Ma & Xuemin Qi & Anuj Kumar, 2019. "Life Cycle Assessment of Plywood Manufacturing Process in China," IJERPH, MDPI, vol. 16(11), pages 1-10, June.
    5. Jianyi Lin & Huimei Li & Wei Huang & Wangtu(Ato) Xu & Shihui Cheng, 2019. "A Carbon Footprint of High‐Speed Railways in China: A Case Study of the Beijing‐Shanghai Line," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 869-878, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesuina Chipindula & Hongbo Du & Venkata S. V. Botlaguduru & Doeun Choe & Raghava R. Kommalapati, 2022. "Life cycle environmental impact of a high-speed rail system in the Houston-Dallas I-45 corridor," Public Transport, Springer, vol. 14(2), pages 481-501, June.
    2. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. Liang Nie & ZhongXiang Zhang, 2021. "Is high-speed rail green? Evidence from a quasi-natural experiment in China," Working Papers 2021.23, Fondazione Eni Enrico Mattei.
    4. Nie, Liang & Zhang, ZhongXiang, 2023. "Is high-speed rail heading towards a low-carbon industry? Evidence from a quasi-natural experiment in China," Resource and Energy Economics, Elsevier, vol. 72(C).
    5. Sun, Wenhao & Gao, Jijun & Jacoby, Gady & Wu, Zhenyu, 2024. "Access to capital and energy efficiency: How high-speed rail investments benefit high-tech firms," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    6. Shoshanna Saxe & Dena Kasraian, 2020. "Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1031-1046, October.
    7. Chen, Yu & Zhao, Changyi & Chen, Shan & Chen, Wenqing & Wan, Kunyang & Wei, Jia, 2023. "Riding the green rails: Exploring the nexus between high-speed trains, green innovation, and carbon emissions," Energy, Elsevier, vol. 282(C).
    8. Huang, Yan & Ma, Liang & Cao, Jason, 2023. "Exploring spatial heterogeneity in the high-speed rail impact on air quality," Journal of Transport Geography, Elsevier, vol. 106(C).
    9. Barone, Giovanni & Buonomano, Annamaria & Forzano, Cesare & Palombo, Adolfo, 2020. "Enhancing trains envelope – heating, ventilation, and air conditioning systems: A new dynamic simulation approach for energy, economic, environmental impact and thermal comfort analyses," Energy, Elsevier, vol. 204(C).
    10. Weichen Liu & Jiaying Guo & Wei Wu & Youhui Cao, 2022. "The evolution of regional spatial structure influenced by passenger rail service: A case study of the Yangtze River Delta," Growth and Change, Wiley Blackwell, vol. 53(2), pages 651-679, June.
    11. Hao Wang & Tao Zhang & Xi Wang, 2024. "High-speed railways reduces carbon emissions: mediating effects of green innovation and the resilience of environmental investment," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-24, December.
    12. Xiangjing Zeng & Yong Ma & Jie Ren & Biao He, 2022. "Analysis of the Green Development Effects of High-Speed Railways Based on Eco-Efficiency: Evidence from Multisource Remote Sensing and Statistical Data of Urban Agglomerations in the Middle Reaches of," IJERPH, MDPI, vol. 19(24), pages 1-20, December.
    13. Huang, Yan & Zong, Huiming, 2022. "The intercity railway connections in China: A comparative analysis of high-speed train and conventional train services," Transport Policy, Elsevier, vol. 120(C), pages 89-103.
    14. Chen, Yu & Wang, Yuandi & Zhao, Changyi, 2023. "How do high-speed rails influence city carbon emissions?," Energy, Elsevier, vol. 265(C).
    15. Zhongshuai Shen & Xueying Bao & Zilong Li & Xiangru Lv, 2024. "Comparative Analysis of Carbon Emissions from Filled Embankment and Excavated Graben Schemes of Railway Subgrade Engineering," Sustainability, MDPI, vol. 16(19), pages 1-28, September.
    16. Li, Zekun & Chen, Zhenhua, 2023. "Predicting the future development scale of high-speed rail through the urban scaling law," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    17. Liu, Zhen & Diao, Ziyu & Lu, Yuan, 2024. "Can the opening of high-speed rail boost the reduction of air pollution and carbon emissions? Quasi-experimental evidence from China," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    18. Li, Tao & Rong, Lili, 2021. "Impacts of service feature on vulnerability analysis of high-speed rail network," Transport Policy, Elsevier, vol. 110(C), pages 238-253.
    19. James Kaizuka, 2021. "Even Electric Trains Use Coal: Fixed and Relative Costs, Hidden Factors and Income Inequality in HSR Projects with Reference to Vietnam’s North–South Express Railway," Sustainability, MDPI, vol. 13(24), pages 1-29, December.
    20. Xiaodong Hu & Ximing Zhang & Lei Dong & Hujun Li & Zheng He & Huihua Chen, 2022. "Carbon Emission Factors Identification and Measurement Model Construction for Railway Construction Projects," IJERPH, MDPI, vol. 19(18), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2019:i:1:p:105-:d:300830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.