IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i9p1520-d227030.html
   My bibliography  Save this article

The Effect of Innovation-Driven Strategy on Green Economic Development in China—An Empirical Study of Smart Cities

Author

Listed:
  • Wenbin Cao

    (Department of Management Science and Engineering, School of Business, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China)

  • Ying Zhang

    (Department of Management Science and Engineering, School of Business, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China)

  • Peng Qian

    (Department of Management Science and Engineering, School of Business, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China)

Abstract

Of all the countries presently industrializing, both going green and going smart ideas can be likened to green development, in that they are helping to address or identify new routes out of environment and development conflicts. Environmental pollution issues loom large for China, and the scale of its transformation makes its proposed solutions of widespread interest. China has begun to decouple some environmental pressure from economic growth, and an innovation-driven strategy is proposed to deal with the synergic development between the economy and environment. Considering both positive and negative effects of the innovation-driven strategy on green economic development, the aim of this paper is to find out the influence path and mechanism of policies and measures of the innovation strategy on green economic development, through the empirical analysis of panel data of 47 pilot smart cities in China from 2009 to 2017. The results show that the innovation-driven strategy has a positive effect on green development, while different innovation-driven indicators play different roles in the promotion of economic green development. Practically, this research provides a decision-making reference for sustainable development policy formulation in developing countries, especially in emerging economies.

Suggested Citation

  • Wenbin Cao & Ying Zhang & Peng Qian, 2019. "The Effect of Innovation-Driven Strategy on Green Economic Development in China—An Empirical Study of Smart Cities," IJERPH, MDPI, vol. 16(9), pages 1-11, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1520-:d:227030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/9/1520/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/9/1520/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Romer, Paul M, 1986. "Increasing Returns and Long-run Growth," Journal of Political Economy, University of Chicago Press, vol. 94(5), pages 1002-1037, October.
    2. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    3. David Popp, 2010. "Innovation and Climate Policy," NBER Working Papers 15673, National Bureau of Economic Research, Inc.
    4. David Popp, 2010. "Innovation and Climate Policy," Annual Review of Resource Economics, Annual Reviews, vol. 2(1), pages 275-298, October.
    5. Garrone, Paola & Grilli, Luca, 2010. "Is there a relationship between public expenditures in energy R&D and carbon emissions per GDP? An empirical investigation," Energy Policy, Elsevier, vol. 38(10), pages 5600-5613, October.
    6. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    7. Stokey, Nancy L, 1998. "Are There Limits to Growth?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(1), pages 1-31, February.
    8. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    9. John Scott, 1984. "Firm versus Industry Variability in R&D Intensity," NBER Chapters, in: R&D, Patents, and Productivity, pages 233-248, National Bureau of Economic Research, Inc.
    10. Xie, Jian & Saltzman, Sidney, 2000. "Environmental Policy Analysis: An Environmental Computable General-Equilibrium Approach for Developing Countries," Journal of Policy Modeling, Elsevier, vol. 22(4), pages 453-489, July.
    11. Cheng, Rui & Xu, Zhaofeng & Liu, Pei & Wang, Zhe & Li, Zheng & Jones, Ian, 2015. "A multi-region optimization planning model for China’s power sector," Applied Energy, Elsevier, vol. 137(C), pages 413-426.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anqi Wang & Lianmei Zhu & Huanan Sun & Shali Wang & Haijing Ma, 2023. "Fiscal Decentralization, Enterprise Digital Transformation and Enterprise Green Innovation—The Case of 11 Years A-Share Listed Companies in China," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    2. Han Bao & Tangwei Teng & Xianzhong Cao & Shengpeng Wang & Senlin Hu, 2022. "The Threshold Effect of Knowledge Diversity on Urban Green Innovation Efficiency Using the Yangtze River Delta Region as an Example," IJERPH, MDPI, vol. 19(17), pages 1-18, August.
    3. Baogui Xin & Yongmei Qu, 2019. "Effects of Smart City Policies on Green Total Factor Productivity: Evidence from a Quasi-Natural Experiment in China," IJERPH, MDPI, vol. 16(13), pages 1-15, July.
    4. Rongjie Lv & Hao Gao, 2023. "Effects of smart city construction on employment: mechanism and evidence from China," Empirical Economics, Springer, vol. 65(5), pages 2393-2425, November.
    5. Senlin Hu & Gang Zeng & Xianzhong Cao & Huaxi Yuan & Bing Chen, 2021. "Does Technological Innovation Promote Green Development? A Case Study of the Yangtze River Economic Belt in China," IJERPH, MDPI, vol. 18(11), pages 1-18, June.
    6. Shu, Yunxia & Deng, Nanxin & Wu, Yuming & Bao, Shuming & Bie, Ao, 2023. "Urban governance and sustainable development: The effect of smart city on carbon emission in China," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    7. Lingyan Xu & Dandan Wang & Jianguo Du, 2022. "Spatial-Temporal Evolution and Influencing Factors of Urban Green and Smart Development Level in China: Evidence from 232 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(7), pages 1-19, March.
    8. Lina Liu & Yunyun Zhang & Bei Liu & Pishi Xiu & Lipeng Sun, 2022. "How to Achieve Carbon Neutrality: From the Perspective of Innovative City Pilot Policy in China," IJERPH, MDPI, vol. 19(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey P. Clemens & Parker Rogers, 2020. "Demand Shocks, Procurement Policies, and the Nature of Medical Innovation: Evidence from Wartime Prosthetic Device Patents," CESifo Working Paper Series 8781, CESifo.
    2. Timothy Swanson & Zacharias Ziegelhoefer, 2011. "Economic Frameworks for thinking about Growth, Sustainability and the role of State Intervention: Paths to Green Economies?," CIES Research Paper series 11-2012, Centre for International Environmental Studies, The Graduate Institute.
    3. Huseynov, Samir & Palma, Marco A., 2018. "Does California’s LCFS Reduce CO2 Emissions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274200, Agricultural and Applied Economics Association.
    4. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    5. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    6. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    7. Philip Kerner & Torben Klarl & Tobias Wendler, 2021. "Green Technologies, Environmental Policy and Regional Growth," Bremen Papers on Economics & Innovation 2104, University of Bremen, Faculty of Business Studies and Economics.
    8. Gugler, Klaus & Szücs, Florian & Wiedenhofer, Thomas, 2024. "Environmental Policies and directed technological change," Journal of Environmental Economics and Management, Elsevier, vol. 124(C).
    9. Zhu, Zhishuang & Liao, Hua & Liu, Li, 2021. "The role of public energy R&D in energy conservation and transition: Experiences from IEA countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    11. repec:spo:wpmain:info:hdl:2441/4b9o704lm99vm9u7s9e6fdpp6r is not listed on IDEAS
    12. Pengfei Cheng & Yuhao Wang & Mengzhen Wang, 2024. "Does intellectual property rights protection help reduce carbon emissions?," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-15, December.
    13. Nicolli, Francesco & Vona, Francesco, 2016. "Heterogeneous policies, heterogeneous technologies: The case of renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 190-204.
    14. Paulo Vitor Levate & Eduardo Gonçalves & Juliana Gonçalves Taveira, 2021. "Regional drivers of green inventions in OECD countries," Letters in Spatial and Resource Sciences, Springer, vol. 14(3), pages 335-354, December.
    15. Edwin van der Werf & Herman R. J. Vollebergh & Johanna Vogel, 2021. "Designing Instrument Packages for the Low-Carbon Transition: An Evaluation Framework with an Application to Austria," CESifo Working Paper Series 9192, CESifo.
    16. Dolphin, G. & Pollitt, M., 2020. "Identifying Innovative Actors in the Electricicity Supply Industry Using Machine Learning: An Application to UK Patent Data," Cambridge Working Papers in Economics 2013, Faculty of Economics, University of Cambridge.
    17. Siyu Feng, 2024. "Do market-based environmental policies encourage innovation in energy storage?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 26(3), pages 673-713, July.
    18. repec:hal:spmain:info:hdl:2441/4b9o704lm99vm9u7s9e6fdpp6r is not listed on IDEAS
    19. Luca Spinesi, 2022. "The Environmental Tax: Effects on Inequality and Growth," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(3), pages 529-572, July.
    20. Wang, Kai-Hua & Umar, Muhammad & Akram, Rabia & Caglar, Ersin, 2021. "Is technological innovation making world "Greener"? An evidence from changing growth story of China," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    21. Bretschger, Lucas & Lechthaler, Filippo & Rausch, Sebastian & Zhang, Lin, 2017. "Knowledge diffusion, endogenous growth, and the costs of global climate policy," European Economic Review, Elsevier, vol. 93(C), pages 47-72.
    22. Giovanni Marin & Francesca Lotti, 2017. "Productivity effects of eco-innovations using data on eco-patents," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 26(1), pages 125-148.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1520-:d:227030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.