IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i8p1434-d224997.html
   My bibliography  Save this article

Developing A Sustainable Urban-Environmental Quality Evaluation System in China Based on A Hybrid Model

Author

Listed:
  • Qigan Shao

    (School of Economics & Management, Xiamen University of Technology, Xiamen 361024, China
    Graduate Institute of Industrial and Business Management, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Sung-Shun Weng

    (Department of Information and Finance Management, National Taipei University of Technology, Taipei 10608, Taiwan)

  • James J.H. Liou

    (Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Huai-Wei Lo

    (Graduate Institute of Industrial and Business Management, National Taipei University of Technology, Taipei 10608, Taiwan)

  • Hongbo Jiang

    (School of Economics & Management, Xiamen University of Technology, Xiamen 361024, China)

Abstract

In China, with the acceleration of urbanization, people pay more attention to the quality of urban environment. Air pollution, vegetation destruction, water waste and pollution, and waste sorting have restricted the sustainable development of urban environment. It is important to evaluate the impact of these environmental concerns as a prerequisite to implement an effective urban environmental sustainability policy. The aim of this paper is to establish a system for evaluating sustainable urban environmental quality in China. We extracted six dimensions and 29 criteria for assessing urban sustainable environment. Then, a fuzzy technique and the best worst method were applied to obtain the weights for the dimensions and criteria. Next, grey possibility values were applied to evaluate the sustainable environmental quality of five cities: Beijing, Shanghai, Shenzhen, Guangzhou, and Hangzhou in China. A sensitivity analysis was performed to identify how the ranking of these five cities changed when varying the weights of each criterion. The results show that pollution control, the natural environment, and water management are the three most important dimensions for urban environmental quality evaluation. We suggest that controlling pollutant emissions, strengthening food waste management, improving clean production processes, and utilizing heat energy are the effective measures to improve the urban environment and achieve sustainable urban environmental development.

Suggested Citation

  • Qigan Shao & Sung-Shun Weng & James J.H. Liou & Huai-Wei Lo & Hongbo Jiang, 2019. "Developing A Sustainable Urban-Environmental Quality Evaluation System in China Based on A Hybrid Model," IJERPH, MDPI, vol. 16(8), pages 1-25, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1434-:d:224997
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/8/1434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/8/1434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Negin Salimi & Jafar Rezaei, 2016. "Measuring efficiency of university-industry Ph.D. projects using best worst method," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1911-1938, December.
    2. Qingyong Wang & Hong-Ning Dai & Hao Wang, 2017. "A Smart MCDM Framework to Evaluate the Impact of Air Pollution on City Sustainability: A Case Study from China," Sustainability, MDPI, vol. 9(6), pages 1-17, May.
    3. Kylili, Angeliki & Fokaides, Paris A. & Lopez Jimenez, Petra Amparo, 2016. "Key Performance Indicators (KPIs) approach in buildings renovation for the sustainability of the built environment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 906-915.
    4. Paweł Ziemba, 2019. "Towards Strong Sustainability Management—A Generalized PROSA Method," Sustainability, MDPI, vol. 11(6), pages 1-29, March.
    5. Rezaei, Jafar, 2015. "Best-worst multi-criteria decision-making method," Omega, Elsevier, vol. 53(C), pages 49-57.
    6. Paweł Ziemba, 2019. "Inter-Criteria Dependencies-Based Decision Support in the Sustainable wind Energy Management," Energies, MDPI, vol. 12(4), pages 1-29, February.
    7. Mangla, Sachin Kumar & Kumar, Pradeep & Barua, Mukesh Kumar, 2015. "Risk analysis in green supply chain using fuzzy AHP approach: A case study," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 375-390.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peipei You & Sen Guo & Haoran Zhao & Huiru Zhao, 2017. "Operation Performance Evaluation of Power Grid Enterprise Using a Hybrid BWM-TOPSIS Method," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    2. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    3. Željko Stević & Irena Đalić & Dragan Pamučar & Zdravko Nunić & Slavko Vesković & Marko Vasiljević & Ilija Tanackov, 2019. "A new hybrid model for quality assessment of scientific conferences based on Rough BWM and SERVQUAL," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(1), pages 1-30, April.
    4. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    5. Geerten Van de Kaa & Daniel Scholten & Jafar Rezaei & Christine Milchram, 2017. "The Battle between Battery and Fuel Cell Powered Electric Vehicles: A BWM Approach," Energies, MDPI, vol. 10(11), pages 1-13, October.
    6. Mališa Žižović & Dragan Pamučar & Goran Ćirović & Miodrag M. Žižović & Boža D. Miljković, 2020. "A Model for Determining Weight Coefficients by Forming a Non-Decreasing Series at Criteria Significance Levels (NDSL)," Mathematics, MDPI, vol. 8(5), pages 1-18, May.
    7. Md. Raquibuzzaman Khan & Nazia Tabassum & Niaz Ahmed Khan & Mohammad Jahangir Alam, 2022. "Procurement challenges in public-sector agricultural development projects in Bangladesh," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-13, December.
    8. Torkayesh, Ali Ebadi & Alizadeh, Reza & Soltanisehat, Leili & Torkayesh, Sajjad Ebadi & Lund, Peter D., 2022. "A comparative assessment of air quality across European countries using an integrated decision support model," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    9. Govindan, Kannan & Shankar, K. Madan & Kannan, Devika, 2020. "Achieving sustainable development goals through identifying and analyzing barriers to industrial sharing economy: A framework development," International Journal of Production Economics, Elsevier, vol. 227(C).
    10. Mi, Xiaomei & Tang, Ming & Liao, Huchang & Shen, Wenjing & Lev, Benjamin, 2019. "The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what's next?," Omega, Elsevier, vol. 87(C), pages 205-225.
    11. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Comprehensive Performance Evaluation of Electricity Grid Corporations Employing a Novel MCDM Model," Sustainability, MDPI, vol. 10(7), pages 1-23, June.
    12. Huseyin Kocak & Atalay Caglar & Gulin Zeynep Oztas, 2018. "Euclidean Best–Worst Method and Its Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(05), pages 1587-1605, September.
    13. Paweł Ziemba & Aneta Becker & Jarosław Becker, 2021. "Forecasting and Assessment of the Energy Security Risk in Fuzzy Environment," Energies, MDPI, vol. 14(18), pages 1-20, September.
    14. Shih-Chia Chang & Ming-Tsang Lu & Mei-Jen Chen & Li-Hua Huang, 2021. "Evaluating the Application of CSR in the High-Tech Industry during the COVID-19 Pandemic," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    15. Gupta, Himanshu, 2018. "Evaluating service quality of airline industry using hybrid best worst method and VIKOR," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 35-47.
    16. Wojciech Sałabun & Krzysztof Palczewski & Jarosław Wątróbski, 2019. "Multicriteria Approach to Sustainable Transport Evaluation under Incomplete Knowledge: Electric Bikes Case Study," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    17. Paweł Ziemba, 2021. "Multi-Criteria Fuzzy Evaluation of the Planned Offshore Wind Farm Investments in Poland," Energies, MDPI, vol. 14(4), pages 1-19, February.
    18. Hana Ayadi & Nadia Hamani & Lyes Kermad & Mounir Benaissa, 2021. "Novel Fuzzy Composite Indicators for Locating a Logistics Platform under Sustainability Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-37, April.
    19. Shojaei, Payam & Seyed Haeri, Seyed Amin & Mohammadi, Sahar, 2018. "Airports evaluation and ranking model using Taguchi loss function, best-worst method and VIKOR technique," Journal of Air Transport Management, Elsevier, vol. 68(C), pages 4-13.
    20. Roya Ghamari & Mohammad Mahdavi-Mazdeh & Seyed Farid Ghannadpour, 2022. "Resilient and sustainable supplier selection via a new framework: a case study from the steel industry," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 10403-10441, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1434-:d:224997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.