IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i8p1360-d223067.html
   My bibliography  Save this article

Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet

Author

Listed:
  • Jijian Lian

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China)

  • Junling He

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China)

  • Wenjuan Gou

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China)

  • Danjie Ran

    (State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300350, China)

Abstract

The downstream nappe wind caused by flood discharge has a great influence on the rainfall distribution, the operational safety of dams, and their surrounding ecological environments. A physical experiment was conducted to measure the spatial distribution of the downstream nappe wind and the splash for a continuous bucket (CB) and a tongue-shaped bucket (TB) for five bucket angles (40°, 45°, 50°, 55°, and 60°). The experimental results demonstrate that the trajectory width and height of the nappe increase as the angles increase, but the effect on the length is converse. The wind velocity and splash weight of the two buckets decrease along the flowing direction. In the lateral direction, the wind velocity and splash weight for the CB decrease as y increases, but the wind velocity of the TB trends to humplike; its splash weight decreases near the axis of the bucket, and is stable in the other region. In the vertical direction, the velocity for the CB increases and then decreases as z increases, but that for the TB decreases monotonously. The velocity of the wind and weight of the splash for the CB decreases with the increasing angles, but those of the TB peak at 45°. The findings are useful for the more accurate prediction of rainfall.

Suggested Citation

  • Jijian Lian & Junling He & Wenjuan Gou & Danjie Ran, 2019. "Effects of Bucket Type and Angle on Downstream Nappe Wind Caused by a Turbulent Jet," IJERPH, MDPI, vol. 16(8), pages 1-16, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1360-:d:223067
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/8/1360/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/8/1360/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jijian Lian & Xiaoqun Wang & Wenjiao Zhang & Bin Ma & Dongming Liu, 2017. "Multi-Source Generation Mechanisms for Low Frequency Noise Induced by Flood Discharge and Energy Dissipation from a High Dam with a Ski-Jump Type Spillway," IJERPH, MDPI, vol. 14(12), pages 1-23, November.
    2. Sternberg, R., 2010. "Hydropower's future, the environment, and global electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 713-723, February.
    3. Bartle, Alison, 2002. "Hydropower potential and development activities," Energy Policy, Elsevier, vol. 30(14), pages 1231-1239, November.
    4. Jijian Lian & Junling He & Fang Liu & Danjie Ran & Xiaoqun Wang & Chang Wang, 2019. "An Improved Empirical Model for Flood Discharge Atomization and Its Application to Optimize the Flip Bucket of the Nazixia Project," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Melikoglu, Mehmet, 2013. "Hydropower in Turkey: Analysis in the view of Vision 2023," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 503-510.
    2. Darmawi, & Sipahutar, Riman & Bernas, Siti Masreah & Imanuddin, Momon Sodik, 2013. "Renewable energy and hydropower utilization tendency worldwide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 213-215.
    3. Zhang, Xiao & Li, Hong-Yi & Deng, Zhiqun Daniel & Ringler, Claudia & Gao, Yang & Hejazi, Mohamad I. & Leung, L. Ruby, 2018. "Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development," Renewable Energy, Elsevier, vol. 116(PA), pages 827-834.
    4. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    5. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2012. "Greener energy: Issues and challenges for Pakistan-hydel power prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2732-2746.
    6. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    7. Ge, Zewen & Geng, Yong & Wei, Wendong & Jiang, Mingkun & Chen, Bin & Li, Jiashuo, 2023. "Embodied carbon emissions induced by the construction of hydropower infrastructure in China," Energy Policy, Elsevier, vol. 173(C).
    8. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    9. Hong, Jin Gi & Zhang, Wen & Luo, Jian & Chen, Yongsheng, 2013. "Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions," Applied Energy, Elsevier, vol. 110(C), pages 244-251.
    10. Kenfack, Joseph & Nzotcha, Urbain & Voufo, Joseph & Ngohe-Ekam, Paul Salomon & Nsangou, Jean Calvin & Bignom, Blaise, 2021. "Cameroon's hydropower potential and development under the vision of Central Africa power pool (CAPP): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Pettersson, Fredrik, 2007. "Carbon pricing and the diffusion of renewable power generation in Eastern Europe: A linear programming approach," Energy Policy, Elsevier, vol. 35(4), pages 2412-2425, April.
    12. Ramírez-Sagner, Gonzalo & Muñoz, Francisco D., 2019. "The effect of head-sensitive hydropower approximations on investments and operations in planning models for policy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 38-47.
    13. Hurford, A.P. & Harou, J.J. & Bonzanigo, L. & Ray, P.A. & Karki, P. & Bharati, L. & Chinnasamy, P., 2020. "Efficient and robust hydropower system design under uncertainty - A demonstration in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Bueno, C. & Carta, J.A., 2006. "Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 312-340, August.
    15. Sharma, Shailesh & Waldman, John & Afshari, Shahab & Fekete, Balazs, 2019. "Status, trends and significance of American hydropower in the changing energy landscape," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 112-122.
    16. Chen, Ji & Shi, Haiyun & Sivakumar, Bellie & Peart, Mervyn R., 2016. "Population, water, food, energy and dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 18-28.
    17. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    18. Zida Song & Quan Liu & Zhigen Hu & Chunsheng Zhang & Jinming Ren & Zhexin Wang & Jianhai Tian, 2020. "Construction Diversion Risk Assessment for Hydropower Development on Sediment-Rich Rivers," Energies, MDPI, vol. 13(4), pages 1-20, February.
    19. Thorburn, Karin & Leijon, Mats, 2005. "Case study of upgrading potential for a small hydro power station," Renewable Energy, Elsevier, vol. 30(7), pages 1091-1099.
    20. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1360-:d:223067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.