IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i6p1043-d216444.html
   My bibliography  Save this article

Concurrent Drought and Temperature Stress in Rice—A Possible Result of the Predicted Climate Change: Effects on Yield Attributes, Eating Characteristics, and Health Promoting Compounds

Author

Listed:
  • Alphonsine Mukamuhirwa

    (Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden)

  • Helena Persson Hovmalm

    (Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden)

  • Hans Bolinsson

    (Department of Food Technology, Engineering and Nutrition, Lund University, P.O. Box 124, 22100 Lund, Sweden)

  • Rodomiro Ortiz

    (Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden)

  • Obedi Nyamangyoku

    (College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, P.O. Box 210 Ruhengeri, Rwanda)

  • Eva Johansson

    (Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, 23053 Alnarp, Sweden)

Abstract

Despite the likely increasing co-occurrence of drought and heat stress, not least in equatorial regions, due to climate change, little is known about the combinational effect of these stresses on rice productivity and quality. This study evaluated the impact of simultaneous drought and temperature stress on growth, grain yield, and quality characteristics of seven rice cultivars from Rwanda, grown in climate chambers. Two temperature ranges—23/26 °C night/day and 27/30 °C night/day—together with single or repeated drought treatments, were applied during various plant developmental stages. Plant development and yield were highly influenced by drought, while genotype impacted the quality characteristics. The combination of a high temperature with drought at the seedling and tillering stages resulted in zero panicles for all evaluated cultivars. The cultivar ‘Intsindagirabigega’ was most tolerant to drought, while ‘Zong geng’ was the most sensitive. A “stress memory” was recorded for ‘Mpembuke’ and ‘Ndamirabahinzi’, and these cultivars also had a high content of bioactive compounds, while ’Jyambere’ showed a high total protein content. Thus, climate change may severely impact rice production. The exploitation of genetic diversity to breed novel rice cultivars that combine drought and heat stress tolerance with high nutritional values is a must to maintain food security.

Suggested Citation

  • Alphonsine Mukamuhirwa & Helena Persson Hovmalm & Hans Bolinsson & Rodomiro Ortiz & Obedi Nyamangyoku & Eva Johansson, 2019. "Concurrent Drought and Temperature Stress in Rice—A Possible Result of the Predicted Climate Change: Effects on Yield Attributes, Eating Characteristics, and Health Promoting Compounds," IJERPH, MDPI, vol. 16(6), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:6:p:1043-:d:216444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/6/1043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/6/1043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zwart, Sander J. & Bastiaanssen, Wim G. M., 2004. "Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize," Agricultural Water Management, Elsevier, vol. 69(2), pages 115-133, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    2. Immerzeel, W.W. & Gaur, A. & Zwart, S.J., 2008. "Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment," Agricultural Water Management, Elsevier, vol. 95(1), pages 11-24, January.
    3. Bonfante, A. & Monaco, E. & Manna, P. & De Mascellis, R. & Basile, A. & Buonanno, M. & Cantilena, G. & Esposito, A. & Tedeschi, A. & De Michele, C. & Belfiore, O. & Catapano, I. & Ludeno, G. & Salinas, 2019. "LCIS DSS—An irrigation supporting system for water use efficiency improvement in precision agriculture: A maize case study," Agricultural Systems, Elsevier, vol. 176(C).
    4. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Mohammad Alauddin & Upali A. Amarasinghe & Bharat R. Sharma, 2014. "Four decades of rice water productivity in Bangladesh: A spatio-temporal analysis of district level panel data," Economic Analysis and Policy, Elsevier, vol. 44(1), pages 51-64.
    6. Gao, Yang & Yang, Linlin & Shen, Xiaojun & Li, Xinqiang & Sun, Jingsheng & Duan, Aiwang & Wu, Laosheng, 2014. "Winter wheat with subsurface drip irrigation (SDI): Crop coefficients, water-use estimates, and effects of SDI on grain yield and water use efficiency," Agricultural Water Management, Elsevier, vol. 146(C), pages 1-10.
    7. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    8. Iqbal, M. Anjum & Bodner, G. & Heng, L.K. & Eitzinger, J. & Hassan, A., 2010. "Assessing yield optimization and water reduction potential for summer-sown and spring-sown maize in Pakistan," Agricultural Water Management, Elsevier, vol. 97(5), pages 731-737, May.
    9. Li, Xiaolin & Tong, Ling & Niu, Jun & Kang, Shaozhong & Du, Taisheng & Li, Sien & Ding, Risheng, 2017. "Spatio-temporal distribution of irrigation water productivity and its driving factors for cereal crops in Hexi Corridor, Northwest China," Agricultural Water Management, Elsevier, vol. 179(C), pages 55-63.
    10. Oker, Tobias E. & Kisekka, Isaya & Sheshukov, Aleksey Y. & Aguilar, Jonathan & Rogers, Danny H., 2018. "Evaluation of maize production under mobile drip irrigation," Agricultural Water Management, Elsevier, vol. 210(C), pages 11-21.
    11. Zhang, Xiying & Chen, Suying & Sun, Hongyong & Shao, Liwei & Wang, Yanzhe, 2011. "Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades," Agricultural Water Management, Elsevier, vol. 98(6), pages 1097-1104, April.
    12. World Bank, 2006. "Reengaging in Agricultural Water Management: Challenges and Options," World Bank Publications - Books, The World Bank Group, number 6957.
    13. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    14. Geerts, S. & Raes, D. & Garcia, M., 2010. "Using AquaCrop to derive deficit irrigation schedules," Agricultural Water Management, Elsevier, vol. 98(1), pages 213-216, December.
    15. Dennis Wichelns, 2015. "Water productivity and water footprints are not helpful in determining optimal water allocations or efficient management strategies," Water International, Taylor & Francis Journals, vol. 40(7), pages 1059-1070, November.
    16. Ahmad, Mirza Junaid & Iqbal, Muhammad Anjum & Choi, Kyung Sook, 2020. "Climate-driven constraints in sustaining future wheat yield and water productivity," Agricultural Water Management, Elsevier, vol. 231(C).
    17. Tarkalson, David D. & King, Bradley A. & Bjorneberg, Dave L., 2022. "Maize grain yield and crop water productivity functions in the arid Northwest U.S," Agricultural Water Management, Elsevier, vol. 264(C).
    18. M. A. Samad Azad & Tihomir Ancev, 2016. "Economics of Salinity Effects from Irrigated Cotton: An Efficiency Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-24, March.
    19. Oweis, T.Y. & Farahani, H.J. & Hachum, A.Y., 2011. "Evapotranspiration and water use of full and deficit irrigated cotton in the Mediterranean environment in northern Syria," Agricultural Water Management, Elsevier, vol. 98(8), pages 1239-1248, May.
    20. Cai, Ximing & Yang, Yi-Chen E. & Ringler, Claudia & Zhao, Jianshi & You, Liangzhi, 2011. "Agricultural water productivity assessment for the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 98(8), pages 1297-1306, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:6:p:1043-:d:216444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.