IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i5p763-d210523.html
   My bibliography  Save this article

Environmental Groundwater Depth for Groundwater-Dependent Terrestrial Ecosystems in Arid/Semiarid Regions: A Review

Author

Listed:
  • Feng Huang

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Yude Zhang

    (China Water Resources Beifang Investigation, Design and Research Co. Ltd, Tianjing 300222, China)

  • Danrong Zhang

    (College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Xi Chen

    (Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China)

Abstract

Groundwater in arid/semiarid regions plays crucial roles in providing drinking water supply, supporting irrigated agriculture, and sustaining important native terrestrial ecosystems. Groundwater depth controls water availability to vegetation and is essential for conserving groundwater-dependent terrestrial ecosystems. Environmental groundwater depth can be defined as a mean depth or a range of depths, satisfying the growth of natural vegetation that is not under stress, either due to lack of water or anoxia or soil salinization. Five methodologies have been reported to estimate environmental groundwater depth: the direct ones rely on response functions that relate vegetation condition, e.g., physiological parameters, appearance frequency, community structure, and remotely sensed physical indexes, to changes in groundwater depth; the indirect one estimates environmental groundwater depth based on the threshold of soil moisture content. To fill a knowledge gap of unique recognized methodology, a conceptual framework was proposed, which involves initial estimation (data collection, response assessment, and estimation) and feedback adjustment (implementation and modification). A key component of the framework is to quantify the linkage between ecological conditions and geohydrological features. This review may provide references for groundwater resources management, ecological conservation, and sustainable development in arid/semiarid regions.

Suggested Citation

  • Feng Huang & Yude Zhang & Danrong Zhang & Xi Chen, 2019. "Environmental Groundwater Depth for Groundwater-Dependent Terrestrial Ecosystems in Arid/Semiarid Regions: A Review," IJERPH, MDPI, vol. 16(5), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:763-:d:210523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/5/763/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/5/763/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaowei Xu & Hao Fu & Jiashuai Yang & Lingyue Wang & Yizhen Wang, 2022. "Land-Use-Based Runoff Yield Method to Modify Hydrological Model for Flood Management: A Case in the Basin of Simple Underlying Surface," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    2. Haohao Cui & Mingjiang Yan & Qian Wang & Guanghui Zhang & Huimin Feng & Xujuan Lang, 2024. "Influencing Factors and Evaluation of Groundwater Ecological Function in Arid/Semiarid Regions of China: A Review," Sustainability, MDPI, vol. 16(4), pages 1-15, February.
    3. Yunbao Bai & Yuchuan Guo & Huijing Wang & Ning Wang & Xuan Wei & Mingtong Zhou & Tiantian Lu & Zihui Zhang, 2023. "The Impact of Groundwater Burial Depth on the Vegetation of the Dariyabui Oasis in the Central Desert," Sustainability, MDPI, vol. 16(1), pages 1-22, December.
    4. Feng Huang & Danrong Zhang & Xi Chen, 2019. "Vegetation Response to Groundwater Variation in Arid Environments: Visualization of Research Evolution, Synthesis of Response Types, and Estimation of Groundwater Threshold," IJERPH, MDPI, vol. 16(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:763-:d:210523. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.