IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i24p5024-d296171.html
   My bibliography  Save this article

Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk

Author

Listed:
  • Ali Namazian

    (Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran 1417414418, Iran)

  • Siamak Haji Yakhchali

    (Department of Industrial Engineering, College of Engineering, University of Tehran, Tehran 1417414418, Iran)

  • Vahidreza Yousefi

    (Project Management, University of Tehran, Tehran 1417414418, Iran)

  • Jolanta Tamošaitienė

    (Civil Engineering Faculty, Vilnius Gediminas Technical University, LT 2040 Vilnius, Lithuania)

Abstract

In this study, Monte Carlo simulation and Bayesian network methods are combined to present a structure for assessing the aggregated impact of risks on the completion time of a construction project. Construction projects often encounter different risks which affect and prevent their desired completion at the predicted time and budget. The probability of construction project success is increased in the case of controlling influential risks. On the other hand, interactions among risks lead to the increase of aggregated impact of risks. This fact requires paying attention to assessment and management of project aggregated risk before and during the implementation phase. The developed structure of this article considers the interactions among risks to provide an indicator for estimating the effects of risks, so that the shortage of extant models including the lack of attention to estimate the aggregated impact caused by risks and the intensifying impacts can be evaluated. Moreover, the introduced structure is implemented in an industrial case study in order to validate the model, cover the functional aspect of the problem, and explain the procedure of structure implementation in detail.

Suggested Citation

  • Ali Namazian & Siamak Haji Yakhchali & Vahidreza Yousefi & Jolanta Tamošaitienė, 2019. "Combining Monte Carlo Simulation and Bayesian Networks Methods for Assessing Completion Time of Projects under Risk," IJERPH, MDPI, vol. 16(24), pages 1-19, December.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:24:p:5024-:d:296171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/24/5024/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/24/5024/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Creemers & Erik Demeulemeester & Stijn Vonder, 2014. "A new approach for quantitative risk analysis," Annals of Operations Research, Springer, vol. 213(1), pages 27-65, February.
    2. Zhang, Limao & Wu, Xianguo & Skibniewski, Miroslaw J. & Zhong, Jingbing & Lu, Yujie, 2014. "Bayesian-network-based safety risk analysis in construction projects," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 29-39.
    3. Nordgård, D.E. & Sand, K., 2010. "Application of Bayesian networks for risk analysis of MV air insulated switch operation," Reliability Engineering and System Safety, Elsevier, vol. 95(12), pages 1358-1366.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crispim, José & Fernandes, Jorge & Rego, Nazaré, 2020. "Customized risk assessment in military shipbuilding," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    2. Catrinu, M.D. & Nordgård, D.E., 2011. "Integrating risk analysis and multi-criteria decision support under uncertainty in electricity distribution system asset management," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 663-670.
    3. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.
    4. Xue, Jie & Yip, Tsz Leung & Wu, Bing & Wu, Chaozhong & van Gelder, P.H.A.J.M., 2021. "A novel fuzzy Bayesian network-based MADM model for offshore wind turbine selection in busy waterways: An application to a case in China," Renewable Energy, Elsevier, vol. 172(C), pages 897-917.
    5. Tao, Liangyan & Wu, Desheng & Liu, Sifeng & Lambert, James H., 2017. "Schedule risk analysis for new-product development: The GERT method extended by a characteristic function," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 464-473.
    6. Liu, Wenli & Li, Ang & Fang, Weili & Love, Peter E.D. & Hartmann, Timo & Luo, Hanbin, 2023. "A hybrid data-driven model for geotechnical reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Guo, Qingjun & Amin, Shohel & Hao, Qianwen & Haas, Olivier, 2020. "Resilience assessment of safety system at subway construction sites applying analytic network process and extension cloud models," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Ünsal-Altuncan, Izel & Vanhoucke, Mario, 2024. "A hybrid forecasting model to predict the duration and cost performance of projects with Bayesian Networks," European Journal of Operational Research, Elsevier, vol. 315(2), pages 511-527.
    9. Zhou, Ying & Li, Chenshuang & Zhou, Cheng & Luo, Hanbin, 2018. "Using Bayesian network for safety risk analysis of diaphragm wall deflection based on field data," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 152-167.
    10. Lin, Song-Shun & Shen, Shui-Long & Zhou, Annan & Xu, Ye-Shuang, 2021. "Novel model for risk identification during karst excavation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Shen, Shui-Long & Lin, Song-Shun & Zhou, Annan, 2023. "A cloud model-based approach for risk analysis of excavation system," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Jiansong Wu & Weipeng Fang & Xing Tong & Shuaiqi Yuan & Weiqi Guo, 2019. "Bayesian analysis of school bus accidents: a case study of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 95(3), pages 463-483, February.
    13. Nihar Ranjan Nayak & Sumit Kumar & Deepak Gupta & Ashish Suri & Mohd Naved & Mukesh Soni, 2022. "Network mining techniques to analyze the risk of the occupational accident via bayesian network," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 633-641, March.
    14. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    15. Albert P. C. Chan & Francis K. W. Wong & Carol K. H. Hon & Tracy N. Y. Choi, 2018. "A Bayesian Network Model for Reducing Accident Rates of Electrical and Mechanical (E&M) Work," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    16. Baoping Cai & Yonghong Liu & Zengkai Liu & Xiaojie Tian & Yanzhen Zhang & Renjie Ji, 2013. "Application of Bayesian Networks in Quantitative Risk Assessment of Subsea Blowout Preventer Operations," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1293-1311, July.
    17. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Xiaoyan Jiang & Sai Wang & Jie Wang & Sainan Lyu & Martin Skitmore, 2020. "A Decision Method for Construction Safety Risk Management Based on Ontology and Improved CBR: Example of a Subway Project," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    19. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    20. Bin Tan & Qiyuan Peng, 2024. "Reliability Analysis of Deep Foundation Pit Using the Gaussian Copula-Based Bayesian Network," Mathematics, MDPI, vol. 12(24), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:24:p:5024-:d:296171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.