IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i22p4429-d286066.html
   My bibliography  Save this article

Anthropogenic Effects on Hydrogen and Oxygen Isotopes of River Water in Cities

Author

Listed:
  • Xiangnan Li

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Baisha Weng

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Denghua Yan

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Tianling Qin

    (Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Kun Wang

    (Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Wuxia Bi

    (Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China)

  • Zhilei Yu

    (Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Institute of Water Resources and Hydrology Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China)

  • Batsuren Dorjsuren

    (Water Resources Department, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Department of Environment and Forest Engineering, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 210646, Mongolia)

Abstract

Stable hydrogen and oxygen isotopes are important indicators for studying water cycles. The isotopes are not only affected by climate, but are also disturbed by human activities. Urban construction has changed the natural attributes and underlying surface characteristics of river basins, thus affecting the isotopic composition of river water. We collected urban river water isotope data from the Global Network for Isotopes in Rivers (GNIR) database and the literature, and collected river water samples from the Naqu basin and Huangshui River basin on the Tibetan Plateau to measure hydrogen and oxygen isotopes. Based on 13 pairs of urban area and non-urban area water samples from these data, the relationship between the isotopic values of river water and the artificial surface area of cities around rivers was analyzed. The results have shown that the hydrogen and oxygen isotope (δD and δ 18 O) values of river water in urban areas were significantly higher than those in non-urban areas. The isotopic variability of urban and non-urban water was positively correlated with the artificial surface area around the rivers. In addition, based on the analysis of isotope data from 21 rivers, we found that the cumulative effects of cities on hydrogen and oxygen isotopes have led to differences in surface water line equations for cities with different levels of development. The combined effects of climate and human factors were the important reasons for the variation of isotope characteristics in river water in cities. Stable isotopes can not only be used to study the effects of climate on water cycles, but also serve as an important indicator for studying the degree of river development and utilization.

Suggested Citation

  • Xiangnan Li & Baisha Weng & Denghua Yan & Tianling Qin & Kun Wang & Wuxia Bi & Zhilei Yu & Batsuren Dorjsuren, 2019. "Anthropogenic Effects on Hydrogen and Oxygen Isotopes of River Water in Cities," IJERPH, MDPI, vol. 16(22), pages 1-14, November.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4429-:d:286066
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/22/4429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/22/4429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Erratum: Global threats to human water security and river biodiversity," Nature, Nature, vol. 468(7321), pages 334-334, November.
    2. Christoph Humborg & Venugopalan Ittekkot & Adriana Cociasu & Bodo v. Bodungen, 1997. "Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure," Nature, Nature, vol. 386(6623), pages 385-388, March.
    3. C. J. Vörösmarty & P. B. McIntyre & M. O. Gessner & D. Dudgeon & A. Prusevich & P. Green & S. Glidden & S. E. Bunn & C. A. Sullivan & C. Reidy Liermann & P. M. Davies, 2010. "Global threats to human water security and river biodiversity," Nature, Nature, vol. 467(7315), pages 555-561, September.
    4. Jürgen Mahlknecht & Luis Walter Daessle & Maria Vicenta Esteller & Juan Antonio Torres-Martinez & Abrahan Mora, 2018. "Groundwater Flow Processes and Human Impact along the Arid US-Mexican Border, Evidenced by Environmental Tracers: The Case of Tecate, Baja California," IJERPH, MDPI, vol. 15(5), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    2. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    3. Yang, Lin & Pang, Shujiang & Wang, Xiaoyan & Du, Yi & Huang, Jieyu & Melching, Charles S., 2021. "Optimal allocation of best management practices based on receiving water capacity constraints," Agricultural Water Management, Elsevier, vol. 258(C).
    4. Yiwen Chiu & Yi Yang & Cody Morse, 2022. "Quantifying carbon footprint for ecological river restoration," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 952-970, January.
    5. Stella Tsani & Phoebe Koundouri & Ebun Akinsete, 2020. "Resource management and sustainable development: A review of the European water policies in accordance with the United Nations' Sustainable Development Goals," DEOS Working Papers 2036, Athens University of Economics and Business.
    6. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    7. Rabeya Sultana Leya & Sujit Kumar Bala & Imran Hossain Newton & Md. Arif Chowdhury & Shamim Mahabubul Haque, 2022. "Water security assessment of a peri-urban area: a study in Singair Upazila of Manikganj district of Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 14106-14129, December.
    8. Ting Xu & Baisha Weng & Denghua Yan & Kun Wang & Xiangnan Li & Wuxia Bi & Meng Li & Xiangjun Cheng & Yinxue Liu, 2019. "Wetlands of International Importance: Status, Threats, and Future Protection," IJERPH, MDPI, vol. 16(10), pages 1-23, May.
    9. Donna, Javier & Espin-Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 55078, University Library of Munich, Germany.
    10. Kaiser, Nina N. & Ghermandi, Andrea & Feld, Christian K. & Hershkovitz, Yaron & Palt, Martin & Stoll, Stefan, 2021. "Societal benefits of river restoration – Implications from social media analysis," Ecosystem Services, Elsevier, vol. 50(C).
    11. Teng Wang & Jingjing Yan & Jinlong Ma & Fei Li & Chaoyang Liu & Ying Cai & Si Chen & Jingjing Zeng & Yu Qi, 2018. "A Fuzzy Comprehensive Assessment and Hierarchical Management System for Urban Lake Health: A Case Study on the Lakes in Wuhan City, Hubei Province, China," IJERPH, MDPI, vol. 15(12), pages 1-16, November.
    12. Ran He & Zhen Tang & Zengchuan Dong & Shiyun Wang, 2020. "Performance Evaluation of Regional Water Environment Integrated Governance: Case Study from Henan Province, China," IJERPH, MDPI, vol. 17(7), pages 1-13, April.
    13. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    14. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    15. Hassan Tolba Aboelnga & Lars Ribbe & Franz-Bernd Frechen & Jamal Saghir, 2019. "Urban Water Security: Definition and Assessment Framework," Resources, MDPI, vol. 8(4), pages 1-19, November.
    16. Steve Hamner & Bonnie L. Brown & Nur A. Hasan & Michael J. Franklin & John Doyle & Margaret J. Eggers & Rita R. Colwell & Timothy E. Ford, 2019. "Metagenomic Profiling of Microbial Pathogens in the Little Bighorn River, Montana," IJERPH, MDPI, vol. 16(7), pages 1-18, March.
    17. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic, , 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    18. Juliana Marcal & Blanca Antizar-Ladislao & Jan Hofman, 2021. "Addressing Water Security: An Overview," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    19. Hossein Mikhak & Mehdi Rahimian & Saeed Gholamrezai, 2022. "Implications of changing cropping pattern to low water demand plants due to climate change: evidence from Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9833-9850, August.
    20. Claudia Bita-Nicolae, 2022. "Distribution and Conservation Status of the Mountain Wetlands in the Romanian Carpathians," Sustainability, MDPI, vol. 14(24), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:22:p:4429-:d:286066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.