IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i18p3444-d267829.html
   My bibliography  Save this article

Detection and Quantification of Tire Particles in Sediments Using a Combination of Simultaneous Thermal Analysis, Fourier Transform Infra-Red, and Parallel Factor Analysis

Author

Listed:
  • Demmelash Mengistu

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway
    The Municipality of Ås, Myrveien 16, 1430 Ås, Norway)

  • Vegard Nilsen

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway)

  • Arve Heistad

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway)

  • Knut Kvaal

    (Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway)

Abstract

Detection and quantification of tread wear particles in the environment have been a challenge owing to lack of a robust method. This study investigated the applicability of a combination of Simultaneous Thermal Analysis (STA), Fourier Transform Infra-Red (FTIR), and Parallel Factor Analysis (PARAFAC) in the detection and quantification of tire particles from formulated sediments. FTIR spectral data were obtained by heating 20 samples in STA. Among the 20 samples, 12 were tire granules in formulated sediments (TGIS) containing 1%, 2%, 5%, and 10% by mass of tire granules, while the remaining eight contained 0.5, 1, 2.5, and 5 mg of tire granules only (TGO). The PARAFAC models decomposed the trilinear data into three components. Tire rubber materials in tire granules (RM) and a combination of water and carbon dioxide were the components identified in all samples. The linear regression analysis of score values from the PARAFAC models showed that the RM quantity predicted were comparable to measured values in both TGIS and TGO. Decomposing the overlying components in the spectral data into different components, and predicting unknown quantity in both sample types, the method proves robust in identifying and quantifying tire particles from sediments.

Suggested Citation

  • Demmelash Mengistu & Vegard Nilsen & Arve Heistad & Knut Kvaal, 2019. "Detection and Quantification of Tire Particles in Sediments Using a Combination of Simultaneous Thermal Analysis, Fourier Transform Infra-Red, and Parallel Factor Analysis," IJERPH, MDPI, vol. 16(18), pages 1-22, September.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:18:p:3444-:d:267829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/18/3444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/18/3444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pieter Jan Kole & Ansje J. Löhr & Frank G. A. J. Van Belleghem & Ad M. J. Ragas, 2017. "Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment," IJERPH, MDPI, vol. 14(10), pages 1-31, October.
    2. Kenneth M. Unice & Marisa L. Kreider & Julie M. Panko, 2012. "Use of a Deuterated Internal Standard with Pyrolysis-GC/MS Dimeric Marker Analysis to Quantify Tire Tread Particles in the Environment," IJERPH, MDPI, vol. 9(11), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jon Tivey & Huw C. Davies & James G. Levine & Josias Zietsman & Suzanne Bartington & Sergio Ibarra-Espinosa & Karl Ropkins, 2023. "Meta-Analysis as Early Evidence on the Particulate Emissions Impact of EURO VI on Battery Electric Bus Fleet Transitions," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    2. Taewoo Kang & Hyeokjung Kim, 2023. "An Experimental Study on the Component Analysis and Variation in Concentration of Tire and Road Wear Particles Collected from the Roadside," Sustainability, MDPI, vol. 15(17), pages 1-11, August.
    3. Wei Wu & Jun Ma & Dong Liu & Qiao Xu & Gang Li, 2022. "Scientific Knowledge Mapping and Thematic Evolution for Tire Wear Particles," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    4. Maryna Strokal & Paul Vriend & Mirjam P. Bak & Carolien Kroeze & Jikke Wijnen & Tim Emmerik, 2023. "River export of macro- and microplastics to seas by sources worldwide," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Xin Li & Guanlai Zhu, 2023. "Green Supply Chain Coordination Considering Carbon Emissions and Product Green Level Dependent Demand," Mathematics, MDPI, vol. 11(10), pages 1-23, May.
    6. Dániel Szőllősi & Péter Kiss, 2024. "Effects of Water Injection in Diesel Engine Emission Treatment System—A Review in the Light of EURO 7," Energies, MDPI, vol. 17(20), pages 1-29, October.
    7. Tess Sigwarth & Johannes Büchner & Michael P. Wistuba, 2022. "Bio-Degradable Wax to Modify Asphalt Binder for Warm Mix Asphalt," Sustainability, MDPI, vol. 14(16), pages 1-16, August.
    8. Shampa Ghosh & Jitendra Kumar Sinha & Soumya Ghosh & Kshitij Vashisth & Sungsoo Han & Rakesh Bhaskar, 2023. "Microplastics as an Emerging Threat to the Global Environment and Human Health," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    9. Edith Dube & Grace Emily Okuthe, 2023. "Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity," IJERPH, MDPI, vol. 20(17), pages 1-23, August.
    10. Vivien Lorenčič, 2023. "The Effect of Tire Age and Anti-Lock Braking System on the Coefficient of Friction and Braking Distance," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    11. Maksymilian Mądziel, 2023. "Vehicle Emission Models and Traffic Simulators: A Review," Energies, MDPI, vol. 16(9), pages 1-31, May.
    12. Yamei Cai & Chen Li & Yaqian Zhao, 2021. "A Review of the Migration and Transformation of Microplastics in Inland Water Systems," IJERPH, MDPI, vol. 19(1), pages 1-15, December.
    13. Miner, Patrick & Smith, Barbara M. & Jani, Anant & McNeill, Geraldine & Gathorne-Hardy, Alfred, 2024. "Car harm: A global review of automobility's harm to people and the environment," Journal of Transport Geography, Elsevier, vol. 115(C).
    14. Arlinda Cakaj & Marta Lisiak-Zielińska & Kinga Drzewiecka & Anna Budka & Klaudia Borowiak & Maria Drapikowska & Arbnore Cakaj & Erjon Qorri & Piotr Szkudlarz, 2023. "Potential Impact of Urban Land Use on Microplastic Atmospheric Deposition: A Case Study in Pristina City, Kosovo," Sustainability, MDPI, vol. 15(23), pages 1-14, November.
    15. Sunhee Mun & Hwansoo Chong & Jongtae Lee & Yunsung Lim, 2022. "Characteristics of Real-World Non-Exhaust Particulates from Vehicles," Energies, MDPI, vol. 16(1), pages 1-16, December.
    16. Barouch Giechaskiel & Theodoros Grigoratos & Marcel Mathissen & Joris Quik & Peter Tromp & Mats Gustafsson & Vicente Franco & Panagiota Dilara, 2024. "Contribution of Road Vehicle Tyre Wear to Microplastics and Ambient Air Pollution," Sustainability, MDPI, vol. 16(2), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:18:p:3444-:d:267829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.